Resource Management and Concurrency in
Athomux

Roland Niese

23rd July 2006

Chapter 1

Introduction

1.1 What is Athomux?

Athomux is an architecture for operating systems that aims at maximal flexibil-
ity, scalibility and extensibility through strict modularisation and uniformness of
the interfaces (called nests) between the modules (called bricks). An often used
metaphor for this structure is the LEGO®) toy brick system, that too allows ex-
tremely flexible compositions out of its bricks, due to its uniform interface, the
knobs. Just like newly developed LEGO bricks in arbitrary forms and colours
can be seemlessy included into any existing model without having to modify
any bricks in it, Athomux allows inclusion of newly developed technologies at
almost any place, in form of new bricks.

1.2 Motivation and Objects

New concepts like instance orientation and optional locking were implemented
during this work to test these concepts in practice. This thesis deals with
concurrency in Athomux and tests increase in performance when using optional
locking. Also, the basic structure of the whole architecture is still in development
and was tested during this work as well. Many times, fundamental elements like
the uniform interface (nests) had to be modified.

1.3 Environment

There are currently two runtime environments available for Athomux, both
hosted by Linux: user and kernel space Athomux. To ease debugging, the lock
mechanism of this thesis was developed in Linux user space ("athomux-ulinux”),
but it was taken care of easy extensibility to other runtime environments through
encapsulation of the runtime-specific parts. The Athomux-loader program al-
ready used for transparent distributed work [4] was used as runtime system and

CHAPTER 1. INTRODUCTION

was later adapted to new developments in the basic system.

Chapter 2

Prerequisites

2.1 Fundamentals

Athomux is instance oriented. What does that mean? An instance oriented
[2] system is composed of isolated modules (bricks), each having a number of
well-defined interfaces (nests) for other modules. The nests of bricks can be
connected (wired) to allow them to communicate with other bricks. Multiple
instances of one brick type can be created and wired individually. It is the
composition of bricks through wires that defines the behaviour of the “whole
thing”.

Note that brick instances have no influence on the wiring of their nests. In
Athomux, this means that bricks’ view of the world is limited to their respective
nests, nothing more. In contrast to, e.g., object orientation, there are neither
public global (“static”) variables that would allow direct (not through wires)
access to other bricks, nor is there a way for a brick to manipulate its own
wiring to other bricks. This is the domain of one local “control” brick instance
that is the only one capable of brick creation, destruction and (dis-)connection
in its scope. It can give control over sub-domains to other bricks by defining a
nest and wiring them to it. Such ”privileged” bricks are called strategy bricks
and can be used, e.g., for automatic or user-requested instantiation of certain
bricks or for filtering of the strategy nest, thus providing a new level of strategic
view.

2.2 Resources

Nests provide resources. The term "resource” in Athomux means nothing more
(and nothing more specific) than the term “information”. A nest defines a uni-
form interface to access information. ”Access” means reading and/ or modifi-
cation of information. For this purpose, a nest defines a number of operations.
This set of operations is fixed and uniform across all nests in the whole Atho-
mux system. There is no extension mechanism whatsoever. To a programmer,

CHAPTER 2. PREREQUISITES 4

this may seem a restriction at first, but is rather a gain of freedom, as it allows
arbitrary composition of resource providers and resource users.

Speaking of which, bricks can be resource providers as well as resource users,
or both at the same time. Their role is defined by the definition of connectors.
Each brick can, at compile time, define input and output connectors. These
terms do not relate to the term pairs "read/ write” or "produce/ consume” as
they do in UNIX systems when chaining programs through pipes. The terms
input and output rather specify the role of the connector as provider or user of
information. The flow of information can be bidirectional. A brick provides a
nest of information at an output connector. An arbitrary number of bricks can
have their input connectors wired to this output connector to make use of the
information provided there. The relation of outputs to inputs is 1:n. While an
output connector can provide its information nest to one, many or no inputs,
inputs must be connected to exactly one output to be operable.

2.3 Bricks

Bricks implement the functionality in Athomux. They process information taken
from the inputs and provide information on their outputs. Bricks without inputs
are original resource providers ("device bricks”) while bricks without outputs are
pure “user” bricks that just act upon information provided to them. A brick
without connectors does not really make sense, as it is totally separated from the
rest of the system. Bricks that have both inputs and outputs are in most cases
some kind of transformer whose information provided on the outputs directly
depends on the data at the inputs.

2.3.1 Lifecycle

A brick’s life cycle always starts with its instantiation. A control brick loads the
code and other static properties of the brick class, assigns enough memory to
it and creates the runtime data structure. If the brick has vital inputs without
which it cannot function properly, they must be connected to outputs before
the brick can be initialized (activated). Once this condition is fulfilled, the brick
can be activated. From then, all active outputs can be used by wiring bricks
via their inputs to the output. This shows a certain dependency relation:

e The activation of an input depends on the connection to an active output.
Note that an input can be wired alias connected to an inactive output. An
inactive input will never emit operations to the output.

e The activation of an output depends on the activation of the brick it is
provided by. Furthermore, it may depend on the activation of certain
inputs of the same brick that are not vital for brick initialization. Note
that it never depends on the connection to any inputs.

e Brick activation may depend on the initialization of certain inputs.

CHAPTER 2. PREREQUISITES 5

These preconditions imply certain dependencies at brick deinitialization, or bet-
ter, shutdown.

e The deactivation of an input may depend on a brick shutdown, but can
be performed during a brick shutdown as soon as the resources used via
the input are not needed anymore. In any case, all resources allocated via
the input must be returned during shutdown.

e Shutdown of the brick depends on the shutdown of all outputs of the brick.

e Shutdown of an output depends on the deactivation (but not disconnec-
tion) of all connected inputs.

At the end of its (local) life, a brick is destroyed by the supervising control
brick. The only precondition is disconnection of all its inputs and outputs and,
of course, deactivation of the brick.

2.3.2 State

Bricks should be stateless. This means they should not contain internal data
that cannot be viewed from the outside. So public attributes like the connections
or explicit attributes are not considered ’state’ because they don’t change during
the lifetime of a brick. But most bricks need to maintain certain configuration
data, typically dynamic data structures describing the contents of an output
nests, or io buffers. Nonetheless, Athomux allows local variables. But bricks
should not use them to save state but only for volatile data or caches.

Whatever is stored in local variables should be flushed into input nests on
brick shutdown. The reason is reconstruction. A brick that has been shutdown
may be locally destroyed but reinitialized elsewhere. It should be possible to
reconstruct the brick from the pure information contained in the input nests.
Athomux aims to be (also) an architecture for distributed network operating
systems. Components of such an operating system should be able to be migrated
to other cluster nodes anytime.

2.4 The Nest Interface

A nest is an interface to an abstract set of information. It defines a logical
address space for access to the information provided by it. At the time of this
work, this is a 64bit address space, independent of the runtime environment.
It should not be confused with a machine’s physical address space. The data
behind a nest’s logical address space can only be accessed via a well-defined and
fixed set of operations.

2.4.1 Transfers

A nest defines an operation to read information from or to write it to a nest, we
call it $trans. These transfers are always between the nest and physical data

CHAPTER 2. PREREQUISITES 6

buffers, the only place where algorithms running on a physical machine can
directly access data (alias information). The smallest unit of information equals
the one of the physical machine the brick is running on, on today’s machines this
is usually one byte. So the transfer operation transfers blocks of bytes between
the logical address space of a nest and the physical one of the local machine.

2.4.2 Data Mapping

It may be inefficient to always copy information from the logical address space
to the physical one. Therefore, a nest defines an operation for users to obtain
a (temporary) physical buffer that directly refers to a certain part of the infor-
mation space of the nest. We call this operation $get. The buffer should be
released after the user brick has finished work on it. The operation to do this is
called $put. It depends on the nature of the nest whether the buffer obtained is
a direct physical reference "into” the nest, is a mere copy of the nest’s input or
refers to some kind of cache the nest maintains for performance reasons. The
user does not know.

2.4.3 Address Mapping

A nest does not have to provide one byte of data for every logical address. There
is always a map between address and data space. This map may sometimes be
static, but most bricks use a dynamic map. The nest interface defines operations
to modify the the address map. A dynamic nest will (in most cases) start with
an empty address space where any data access operation will fail upon. An
operation called $create maps some of the background data space to a specified
subset of the address space, logically this is equivalent to the “creation” of data,
hence the name. To “destroy” data (undefine that mapping), Athomux nests
define an operation called $delete.

An Athomux special is an operation to "move”’ a mapping to a different
address range. Logically, this looks like a movement of the data to a different
location, but without the efforts of copying it. The operation performing this is
called $move. This mechanism allows users to maintain arbitrary dynamic data
structures as content of the nest without worrying about such things like linked
lists or trees. For example, lineary sorted information can be kept in an array.
Information can be efficiently found via binary search, while insert and delete
operations are cheap in terms of time (one simple move operation).

2.4.4 Address Management

A nest can implement management of the resources it provides through this
operation group. A user can allocate exclusive address space and later return
it to the nest, analogous to the C-style functions "malloc” and "free”. The main
difference is that addresses are allocated. What can be found behind these
addresses depends on the nest implementation. For example, a "heap” nest
could decide to return an empty address space or one filled with zeroed data. A

CHAPTER 2. PREREQUISITES 7

pipe reader nest could fill it with information read from some stream. The basic
definition of the operation pair only specifies that each “allocate” operation will
never return an address range that has been allocated before but has not been
returned via the "free” operation. In other words, these operations are used to
(temporarily) claim some address space as exclusive domain.

2.4.5 Lock management

This (last) group of operations is what this thesis is about. The operations
of this group handle synchronization of concurrent access to nest resources.
With these operations, users can lock part of a nest and later release it again.
When a user issues a lock request that conflicts with an existing one then it
will either fail or wait until the conflict is solved, depending on what behaviour
the user requested. The operations that perform locking and unlocking are, not
surprisingly, called $1ock and $unlock.

2.4.6 Resource Retracts

Until now, nests have not shown any solution for an old problem in program-
ming, depletion of resources due to resource “leaks”, meaning allocated but un-
returned resources. Athomux provides an interface for this: resource retracts.
On resource shortage (or for some other reason), an output may issue a spe-
cial operation to one or multiple inputs connected to it, asking for return of
resources. On serious resource shortage, it may simply notify the input of the
forced retract of resources, what will most probably make the brick that suffered
from the retract fail in the near future.

2.5 Strategy Bricks

Bricks cannot influence the wiring of their inputs and outputs. This is the
domain of control bricks. Every part of the whole Athomux brick network is
managed by such a control brick. It can create, connect and destroy bricks.
If itself is part of its own domain, this brick can (dis-)connect its own inputs
and outputs or even self-destruct. Such a brick can give control over parts of
its domain to sub-control bricks by providing a ”strategy” output nest. This is
one of possible definitions of the contents of a nest. A strategy nest provides
information about the structure of the brick network and may provide ways to
modify it. So any brick that gets connected to this output gains power over the
brick structure. This is probably the area most sensitive to security issues in
Athomux. Any brick connected to a strategy nest can in turn provide an own
perspective on the brick structure to other strategy bricks. For example, this
could be a filtered view of the strategical information at its strategy input, a
new strategical subdomain, or two strategical inputs merged into one output.
The concrete format of the strategical information has not been fixated yet.
It is not that important, anyway, because on introduction of a new format, back-

CHAPTER 2. PREREQUISITES 8

wards compatibility can always be provided through adapter bricks translating
between the new and the old format. First was a textual format that aimed at
easy debugging and maximal generality. Its main benefit is human-readability
and easy extensibility. The main drawback is low performance due to parsing
and reconversion to strings. During this work, an operational strategy nest
using a new operation group was introduced, together with an adapter brick
between them. Hardy Kahl tested it in his work about network transparency
[4]- Its main benefits are surely easy use of the interface and performance. The
main drawback is the ballast non-generic operations every nest must carry but
have no function in non-strategy nests. Moreover, once we recognized that the
disadvantages outweigh the advantages, we saw that a revision (removal of those
additional operations) cannot be compensated simply by inserting an adapter
brick because the nest interface is uniform and operations can removed only
everywhere or nowhere. Anything else (to no doubt possible) would destroy the
major advantage of Athomux, universal brick composition.

Chapter 3

Concepts

3.1 Concurrency

The term “concurrency” describes the problem of simultaneous access to shared
data by multiple processes. The terms “process” and “thread” have already been
given very specific meanings by modern operating systems (i.e., a “process” to
be the unity of an address space and a number of “threads”, each an active flow
of operation). We will avoid these terms, since they could lead to confusion.
Instead, the term “control flow” will be used as abstract description for an al-
gorithm being executed by a processor. Modern systems allow for simulteneous
execution of multiple control flows, called multitasking. Semantically, there is
no difference between those control flows being executed on separate processors,
on separate network nodes, or by one processor simulating simultaneous execu-
tion by rotatory assignment of short time slices to each active flow (preemptive
multitasking, in contrast to cooperative multitasking requiring explicit voluntary
handover of the processor resource to other control flows, what would pose a
semantic difference due to predictable scheduling).

Multiple control flows each working on exclusive resources (e.g. a local stack
frame) cannot influence each other and can run totally indedendently. A prob-
lem arises as soon as resources are shared between multiple control flows. Algo-
rithms are the stepwise implementation of mathematical functions with an input
and output domain. To achive a correct result after execution of an algorithm,
they require

e the input domain to stay constant during its evaluation
e the output domain to be exclusive during the storage of the result

Furthermore, there can exist a dependency relation between multiple executions
of different algorithms, forcing the availability of synchronization mechanisms.

CHAPTER 3. CONCEPTS 10

3.2 Synchronization

Synchronization denotes mechanisms to delay execution of a certain part of
code by control flows until a predefined condition arrives. Such control flows
either repeatedly keep checking for that condition (busy wait) or are sent to sleep
(removed from the active schedule) by the supervising process management until
the condition arrives. Examples of synchronization mechanisms are

e Mutex: permittance of only one execution of a certain algorithm at a time.

e Semaphores: execution delay due to exceeding of a predefined maximum
number of control flows allowed to execute a certain algorithm.

e Monitors: protection of a certain data object (encapsulated data with
well-defined access operators) from simultaneous access by multiple control
flows.

All these basic mechanisms are equivalent and can usually be implemented effi-
ciently using very few native machine instructions. Higher- level synchronization
mechanisms like Athomux locks can be implemented based on such low-level op-
erations.

3.3 Synchronization in Athomux

Data operations in Athomux occur exclusively in (output) nests, and so does
synchronization. Synchronization in Athomux means locking of an address range
in a a nest against concurrent access. Athomux distinguishes two lock grades,
“read” and “write”, agreeing with common understanding;:

e Read locks are applied to a nest to signal temporal immutability of the
data in a certain nest region. Multiple concurrent read locks do not conflict
with each other.

e Write locks could also be called exclusive locks, since only a single write
lock of a certain nest region is allowed at a time. Any other concurrent
lock request will conflict and so either fail or block the requester.

e A write lock always implies a read lock, analogously does the release of a
read lock imply the release of a (possible) write lock.

e Locks can be up- and downgraded after obtaining, to signal a change in
the demands of the operation to the locked nest region.

Viewing an Athomux nest operation as an algorithm, it would lock its input do-
main against concurrent modification through a read lock and its output domain
against any concurrent access through a write lock. While the input domain can
be read by other operations concurrently, the output domain remains exclusive
to the algorithm until release. Transition between lock grades is performed by

CHAPTER 3. CONCEPTS 11

$lock(write)

$lock(read) $lock(write)

>~ _$unlock(read) .-~ .

AN

ol _$unlock(write) _ -

$lock(none)
$lock(read)

$unlock(none)
$lock(none) Sunlock(write)

$unlock(*)

$lock(*)
$unlock(none)

$unlock(read)

Figure 3.1: Nest recources can be locked in different grades to increase con-
currency. Lock grade increases from left to right. The $lock and $unlock
operations can be used for transitions between lock grades. Only operations
increasing the grade of a lock can cause conflicts and thus either fail or block
the caller.

Note: At the time of this writing, the transitions illustrated in dashed lines were
not implemented due to a ongoing discussion about their usability.

the nest operations $lock and $unlock, as shown in figure 3.1. Note that these
transitions can only be performed by the lock owner. Lock operations issued by
others will either coexist or conflict (see above) with existing locks.

Most conventional lock mechanisms apply to predefined data objects and
either lock them entirely or not at all. Locks in Athomux instead apply to
logical address ranges, held locks can be released in different granularity (i.e.,
different partitioning) than they were originally obtained in [3].

Apart from data io operations, Athomux nests also define an address map-
ping, so it is natural to also define locks on addresses. They have the following
meanings:

e Address read locks signal an immobilization of a nest region, to protect
it from being destroyed, moved away, or overwritten by another address
region moved “onto” it.

o Address write locks signal the requestor’s will to modify the nest structure
and to keep off other control flows depending on its stability.

Normally, Athomux processes are expected to cooperate, (i.e., to make explicit
use of lock operations when accessing a nest). The $lock and $unlock opera-
tions are implemented independently from the other operations (orthogonality),
allowing a separate implementation of these operations “on top” of another nest
anywhere where necessary. This avoids unnecessary overhead wherever synchro-
nization is not necessary (e.g., when only single-user operation is demanded).
In cases where a nest really needs “protection” (e.g., from concurrency- unaware

CHAPTER 3. CONCEPTS 12

bricks not using lock operations, or from external, untrusted bricks), an appro-
priate protection brick can be inserted that implements this functionality.

3.4 Resources

In Athomux’ philosophy, nests are considered resource providers. In contrast to
consuming semantics, like in UNIX pipes, resources are temporarily allocated
(“borrowed”) from a nest to read or modify and to finally return them. These re-
sources are address space, data space, and locks. Data and address locks are sep-
arate resources (instead of a functional dimension of the resources “data_ space”
and “address_space”) because they are implemented independently from the
other functions working on these resources.

Allocation from and return to a nest is specified by the paired operations
(i.e., $gadr/ $padr for address space, $get/ $put for data space, and $lock/
$unlock for locks). Resource allocation can only be temporary, they all must
be returned to the nest sooner or later. On demand, they may be even reclaimed
by the output nest.

Singular operations, on the other hand (e.g., $trans, $move), just make one-
time use (reading or modification) of resources’ contents without “retrieving”
them from the nest. Note that $create and $delete are singular operations,
no paired ones. They do not allocate part of the resource “address space” from
a nest, but modify its contents (i.e., (re-)assignment of address to data space).
This is analogous to the $trans operation reading or modifying the contents
of the resource “data space” (i.e., the data) but not allocating any. You can
also think of $create and $delete as special $move operations to or from some
background pool of spare data space.

3.5 Mandates

When you lend out posessions of yours to someone then you want to know to
whom. For an effective resource management, nests also need to identify the
owner of a resource. This is important for nests to

e know what resources are being returned (address ranges of read locks, as
well as those of allocated data buffers, may overlap, so the logical address
alone is no unique identification for a resource).

e associate “stale” resources with their owner who is unable (or unwilling)
to return them (e.g., after having crashed and been removed) and need to
be retracted (“garbage collection”).

In a distributed system like Athomux, physical resources cannot be used as iden-
tification of individuals because they have only local (i.e., on one host machine)
scope and could be ambiguous across network nodes. Athomux defines man-
dates to identify resource owners. Every operation invocation is labeled with a
mandate to identify the individual that authorized it.

CHAPTER 3. CONCEPTS 13

Note that mandates not only sign passive resources (allocated from nests)
but also active resources (processor time) that need association with individuals,
too. In Athomux, there are no “process” or “thread” ids because they, as physical
resource identifiers, too would be meaningless across host boundaries, just like
physical identifiers of passive resources (e.g., pointers). Also note that multiple
control flows are allowed to carry the same mandate, what also is unlike process-
and thread-oriented systems where a thread id is uniquely assigned one thread.

A mandate identifies an abstract task (do not confuse this term with the
notation for a “process” in certain operating systems) to accomplish, and all
resources allocated by it. For example, a mandate could be associated with
an initial operation invocation and be passed on to further operations caused
by it. The mandate would then end with the return of the original operation
(and resources left behind could be collected). Another association target of
a mandate could be a nest or a brick instance (or a group of brick instances)
that uses it to sign all operations originating from it. The mandate then would
become free for garbage collection on deinstantiation of the mandate-holding
instance.

Of course, mandates must always be unique. One way to achieve this could
be, for instance, a central mandate management nest where all mandates are
allocated from. But this could make later connection of two brick networks diffi-
cult, if they had been totally independent before, because mandate ambiguities
could arise. But there are ways to solve such a situation, for example through
(transparent) insertion of mandate mappers between the brick networks.

3.6 Bottlenecks

Bricks inmidst of the global brick network seldomly act as a provider of new
resources, they mostly act as a resource transformer from their inputs to their
outputs. As a consequence, operations usually cause a chain of operation invoca-
tions up to original resource provider bricks. On the way, they can pass through
potentially many mappers, buffers, caches, heaps, pipes, connectors, etc. In this
chain, there may exist “bottlenecks”, bricks that cause significant latencies (e.g.,
bricks implementing network connections or encryption). To reduce negative
impact on performance, we implement lock caching.

3.7 Lock caches

Lock caches are a key technology for efficient concurrency management in Atho-
mux. A lock cache is an “outpost” of a lock manager that appears to client bricks
just like an original lock manager. Unlike an original lock manager, however,
a lock cache does not have the whole nest as its domain but only the parts it
has “borrowed” from the original lock manager (or from a previous lock cache).
When a request for a lock arrives that it does not have “in storage”, it redirects
the request to the lock manager. Otherwise, it can simply grant the lock from

CHAPTER 3. CONCEPTS 14

@ O O

@

0 0 0 0

\ L | — | |
i
0 o0 0 0
[| [| [| [| [
‘ ‘ 1 ‘ ‘ : ‘ lock cache
3 3 nest : 3
0 0 0 %resource‘

| 1 |] || | | lock manager

Figure 3.2: Function of a lock cache, illustrated in 7 steps. A client (the oval
above) is connected to a lock manager’s output nest (the scale below) via a lock
cache (whose output nest is symbolized by the scale in between). (1) Initially,
no resources of the lock manager (i.e., the locks) have been allocated yet. A
client requests to lock a part of the nest it is connected to. (2) The lock cache
does not own the requested resource (it does not hold a lock on this address
range), so it requests it itself from the lock manager. (3) The lock manager
grants the lock to the lock cache. (4) The lock cache in turn grants the lock (it
now owns and so can redistribute) to the client. (5) Later, the client returns
part of the obtained lock, but the lock cache keeps it, instead of returning it to
the lock manager. (6) Another client allocates a lock from the nest. (7) This
time, the lock cache already owns the requested lock and so can immediately
grant it to the client, sparing (potentially costly) communication with the lock
manager.

its own “stock” (see figure 3.2). The advantage is obvious: many lock requests
with high locality can be reduced to few by a lock cache preserving locks re-
leased by a client, instead of returning them to the superordinate lock manager.
This can drastically reduce communication traffic, and so increase performace
at slow connections. Widely-shared resources, like distributed shared memory
(DSM [5]), can be significantly be increased in performance by lock caching.
Since the lock cache works as kind of a "lock reseller”, it issues all resource
transactions to the resource manager under its own brick mandate. This way,
the lock cache always keeps control over the resources allocated by itself. To
the superordinate lock manager, all locks held by clients of the lock cache are
marked as owned by the lock cache. When redistributing the lock resources to
clients that the lock cache stores the client mandates in its own local registry.
It is hard for a lock cache to decide when to return resources currently not

CHAPTER 3. CONCEPTS 15

|§D—| |:| 'S@—P *—\7:' g@ _ ?) L(ig]riager

clients

Figure 3.3: Resource retract. An example in four steps. Two clients are con-
nected to a lock manager’s (could as well be lock cache’s) output nest. (1) The
right-hand client requests a lock on a nest range that is (at least partly) held
by the client to the left. (2) The conflicting nest range is requested for retract
from the owner by the lock manager. (3) The retract is granted by the left-hand
client (otherwise, the client on the right would have to wait, or the lock manager
could force retract). (4) The returned resources are granted to the client to the
right.

being used by clients. Actually, it is designed to keep them as long as possible.
So another client directly connected to the lock manager might get blocked
when requesting a lock held by a lock cache but not used by any client (i.e., a
cached lock). To prevent a deadlock, the lock manager needs a way to reclaim
resources.

3.7.1 Resource Retracts

Athomux input nests define an operation for such a resource retract. Currently,
it is the only operation that is directed “the other way around”, from outputs to
inputs. When an incoming lock request conflicts with an existing one, the lock
manager can decide to ask the current owner of the lock resource to return it.
The requester has to wait for the retract to succeed, or to abort and try again
later (when the lock has been returned). If retract is repeatedly denied by the
owner, the lock manager can later decide to urgently demand return of the locks
or even forcibly retract them without further notice (comparable to a SIGKILL
in UNIX after an unsuccessful SIGTERM).

3.7.2 Lock registry of a lock cache

A lock manager maintains an internal dynamic data structure where it registeres
what address ranges have been locked by whom (by what mandate). This way,
locks can be effectively managed among lock clients of the lock cache. But unlike
an original lock manager, a lock cache also has a superordinate lock manager
that can retract locks from the cache. But instead of maintaining a separate
data structure to store which locks the cache itself holds and which still belong
to the lock manager, the lock cache can use a little trick to maintain both sub-
and superordinates in one registry: it considers the lock manager another lock
client. When having an abstract look at the operations clients and the lock
manager send to the lock cache, it turns out that they are equivalent. The
following table illustrates this:

CHAPTER 3. CONCEPTS 16

| Logical operation | Client-side operation | Manager-side operation |

request $lock $retract
grant return $lock=ok $unlock®
deny return $lock=failure | return $retract=failure

The operations $lock, $unlock and $retract are considered different ver-
sions of the abstract operations request, grant and deny. Request has the di-
rection ”from client to cache”, the other two operations “from cache to client”.
The cache has just to maintain a unique mandate to represent ownage by the
lock manager. The example implementation chose the lock cache’s own brick
mandate since it is unused in the lock registry (lock ranges owned by the cache
itself but not redistributed to clients are simply marked as "not locked” in the
registry).

One special operation has net been mentioned in the table, because it can
only be sent by the superordinate lock manager: the urgent retract. Logically
this could be called a "forced return” of locks. The lock cache can’t do anything
else than check its registry for clients concerned by this operation, delete their
locks and forward the retract notification to them.

3.7.3 Order of Operation Delivery

A problem of distributed systems arises in Athomux, too: consistent order of
delivery. In Athomux, all operation calls should be regarded messages. One
brick that concurrently sends two (or more) operations out of one of its inputs
can not assume that both operations will “arrive”, i.e., will be executed, in
the same order at the destination brick. This is true even if the connection
is just local: when the scheduler transfers the cpu resource just after the first
operation has been called, but before the first instruction of the operation in
the destination brick has been executed, the later operation may be executed
before the first one. In most cases, this is not an issue. But on lock requests by
different clients (one of which could be the superordinate lock manager, makes
no difference) overlapping both in space (address range) and time (concurrency),
a race condition can arise with serious results if the wrong candidate wins:

e Client A and client B both request a lock on an address range X (the
overlapping range of both requests).

e The request of client A is granted first. The operation starts returning
success.

e Client B must wait for the lock that has been granted to A. Nonetheless, a
$retract is sent out to notify the holder of the lock: Client A, who indeed
does not hold the lock yet, since the grant has not yet reached him.

e If the lock grant reaches Client A first, everything is alright and consistent.

e If the retract reaches Client A before the lock grant, it will ”"succeed”
(because A does not yet know that it owns the lock).

CHAPTER 3. CONCEPTS 17

e When the lock grant finally reaches Client A, it now knows that it has
become the owner of the lock, but the $retract operation already has
returned.

e If Client A does not return the lock without request (e.g., if it is a lock
cache itself), Client B will starve waiting forever for the lock to be re-
turned.

(Solution follows)

3.8 Retract Filters

In Athomux, multiple inputs can connect to one output, but not vice versa.
A retract operation invoked at an output with multiple inputs connected to it
(in contrast to a “selective” invokation at a certain input) results in multiple
operation invocations, one for each connection. For performance reasons, they
will be invoked in parallel. Thus, a retract, while propagated further down the
network, can spread into a potentially huge number of operations, increasing
exponentially. This can seriously impact overall system performance by using
up a lot of processor time unnecessarily, because retracts will most probably in
the end address only one or few more bricks that hold the locks to be retracted.
So it would be best to find out the paths to the bricks concerned in advance,
but a major property of instance orientation is obscurity of neighboring brick
instances, so the lock manager cannot “know” anything about the paths to the
lock owners. There has to be a way (i.e., a brick) to show retract operations
the right way through the brick network, after they have been “unleashed”.

To design such a filter brick, we must first have a look on operation paths and
possible furcations and unions of this path in Athomux brick networks. An input
operation can fork either explicitly, by a brick forwarding it to multiple outputs,
or implicitly, through multiple inputs connected to one output. Two paths can
also (re-)join inside a brick, what could cause a duplication of a previously
forked $retract operation but is no problem, because a resource can only be
retracted once. An example path a retract operation could take through a brick
network is illustrated in 3.4, together with the correct placement of filter bricks
to reduce the number of unnecessary operation invocations.

A retract filter brick must determine whether the $retract operation at
its input should be forwarded to its output, and if it should, to which input(s)
connected to it. It can do so by logging successful $lock and $unlock operations
going through it. When a $retract operation arrives at its input, the brick can
decide if the lock addressed by the operation was granted via the path through it
or not, by looking at the log. If not, the $retract operation will simply return
true, meaning "retract of all specified resources that were allocated via this path
will be released”. That statement is true if the set described by that statement
is empty. At a furcation of the path, the results of all returning $retract
operations will be combined by a logical AND and then returned to the retract
requester. So only if all parts of the request for retract have been granted, the

CHAPTER 3. CONCEPTS 18

. . #lock_cache
operation propagation path

#lock_cache e ’ #retract_filter
— #union —

#lock_cache b Ee *@
#forward

Figure 3.4: Potential furcation and joins of an input operation’s path starting
at #lock_manager. On the right-hand side, the possible ways to split and join
paths, together with senseful placement of filters, are illustrated (path furcation
and joining through input operation forwarding, and path furcation through
multiple input connection).

#lock_manager

result finally returned to the lock manager will be ¢true. This is also the reason
why the return of the $retract operation to the lock manager cannot cause
an immediate release of the locks. If the retract of only one little part of the
whole request has been denied then the final result is false. In that case, the
lock manager would not know which locks have been successfully retracted and
which have not. So the actual release of the retracted resources has to take part
via an explicit $unlock operation. Except for forced retracts, of course, because
they do not expect an answer in form of an explicit lock release. However, in
both cases, requested and forced retract, the result of the $retract operation is
irrelevant to the lock manager, so it does not even need to return, what reduces
traffic even more.

3.9 Optional Locking

Optional locking 3] is the Athomux way of speculative locking. When requesting
alock on a certain address range in a nest, the requester can add an optional part
that can be granted partially by the lock manager, depending on conflicts with
existing locks. The optional part of the request never causes a lock operation
to fail or, on synchronous invocation, to wait. Of course, the obligatory part of
the lock request still shows standard behavior (i.e., it is either granted or denied
entirely). This way, communication traffic an be reduced even more, optional
locking works as a kind of “forward caching” 3.5.

It is cumbersome, however, for a user brick to implement speculative lock-
ing itself, although it may be the instance that can best predict what will be
locked next. But besides the expense of additional programming overhead, to
concentrate features in bricks is not the Athomux way. Outsourcing of optional
locking has many advantages:

e No additional (and redundant) programming efforts necessary in user
bricks.

CHAPTER 3. CONCEPTS 19

client A

lock lock i
manager cache client A
client B

Figure 3.5: Optional locking. A demonstration in 6 steps. We have a client “A”
connected to a lock manager indirectly via a lock cache, and a second client “B”
connected directly to the lock manager. (1) Client “B” already owns a lock on
part of the lock manager’s output nest. Now client “A” reqests a lock from the
lock cache. (2) The lock cache adds an optional lock request, speculating for
future lock requests from client A, and sends the request to the lock manager.
(3) The lock manager recognizes a conflict between the lock request from the
lock cache and the existing lock held by client “B”. It decides not to send a retract
request to client “B” but instead only partly grants the optionally requested lock
to the lock cache. Note: a lock manager could as well decide to retract from
client “B” and wait for the answer before granting the lock cache’s request. (4)
The lock cache can now grant the lock requested from client “A”. (5) Later,
client “A” requests another lock from the lock cache. (6) Due to speculative
locking, the lock cache already owns the requested lock and can serve client “A”
immediately, without any requests to the lock manager.

CHAPTER 3. CONCEPTS 20

e Increased modularity (an important feature of Athomux).

e Application of optional locks only where necessary (e.g., for a user brick
“not far from” the lock brick, optional locking would yield no increase in
performance but only cause additional overhead).

3.10 Problem of Operation Atomicity in Multiuser
nests

Until now, only #nter-brick synchronization has been addressed. Until now, all
nests have been presumed to be multiuser nests, what means nothing more than
the nest supporting multiple simultaneous operation calls with a determinable
result. In the context of concurrent programming this is called atomicity or
linearizability of operation calls. This includes reentrance of all operations the
nest implements.

The convention that Athomux bricks should be implemented statelessly (no
brick-internal variables) could lead to the assumption that the property “mul-
tiuser” of a brick’s output nests is determined solely by that of its inputs, but
this is only true for stateless bricks where every incoming operation results in
maximally one outgoing operation (e.g., in simple, static mappers). As soon as
the execution of an operation requires invokation of more than one operation,
further (internal) synchronization is necessary.

In most Athomux bricks, operations access a common input nest region,
often a dynamic data structure (e.g., a list, tree, etc.). This data structure
configures the transformation implemented by the brick, it is often referred to
as “brick state”, although data stored in external nests is not part of a brick.
Anyway, such a data structure shared by potentially several operations running
concurrently is a good example for data needing brick-internal synchronization.
Remember that reentrace, and so atomicity, of a group of functions needs explicit
synchronization as soon as modification of shared variables is involved. Now,
mandate-based locks pose a problem: two simultaneously executed operations
with the same mandate could cause conflicting modifications in the “state” nest.
For the sake of atomicity, they would need synchronization but locks carrying
the same mandate do never conflict.

To implement true critical sections, a new lock brick is required that ignores
mandates and where locks never “melt” instead of conflicting. This is a much
simpler approach to synchronization, and one could think of always using this
brick for synchronization, even between bricks. But such a simple lock brick
lacks resource owner identification, a feature that is absolutely necessary for
lock caching, retract, optional locking and garbage collection. Inside a brick,
this is no severe issue, since the “individuals” there are not mandate holders
but operation executions. An operation that allocated local locks is to release
them before returning to the caller. And even if it does not, due to faulty code
or a sudden (i.e., externally forced) abortion of the control flow, the resulting
error condition can simply be resolved by reinitialization of the surrounding

CHAPTER 3. CONCEPTS 21

brick (what involves reinitialization of all internal bricks, too, including the lock
brick). So, locality of errors is preserved.

An additional convention implied by the use of an internal lock brick is the
use of an exclusive brick mandate for operations synchronized by it. Semanti-
cally, they express resource ownage by the brick that uses internal locks. The
reason for this is the danger of deadlocks that can occur when subsequent nests
block an operation that holds an internal lock that in turn blocks another op-
eration that is supposed to release the subsequent lock. This is equivalent to
the problem of nested monitors [7]. Usage of the same brick mandate for all
operations working on the internally synchronized nest will make subsequent
mandate-based blockings less likely (locks with the same mandate do not con-
flict) and, even if they do occur, they will make the source of the deadlock
identifiable and thereby the deadlock itself resolvable.

3.11 Adapters

The problem of a singleuser nest (presuming only one operation call at a time) to
be connected to inputs requiring a multiuser nest could occur?. This may never
happen, because this could take the brick providing the nest into an undeter-
mined state (in other words, make it crash). The best solution is to upgrade the
brick to make the respective output a multiuser nest. But this is only possible if
the brick source code is available (and analyzable with reasonable efforts). An
alternative could be reimplementation of the brick. Another solution is to set
up a “monitor” (in classic terminology) “around” the nest, just like you would,
for example, prepare an obscure Java [6] object for concurrent access by deriv-
ing a “synchronized” (Java keyword) version. In Athomux, this can be done by
connecting an appropriate adapter brick to the nest, a brick that forces oper-
ation execution one-by-one. This is to no doubt effective but highly ineflicient
because it destroys all benefits of a multiuser nest over a monitor. Multiuser
adapters pose tight “bottlenecks”. When placed “to the left” (near original re-
source providers), they can cause a great loss of performance due to a “traffic
jam” of operations waiting for the operation currently being executed “behind”
the adapter. When placed on the far right (near user bricks), the operation
currently being executed can delay subsequent operations for a long time (see
figure 3.6).

The conclusion is to avoid multiuser adapters whenever possible. Bricks
should always implement multiuser output and input nests to maximize concur-
rency.

Furthermore, the problem of deadlocks mentioned in 3.10 becomes even
worse because the adapter brick cannot simply change the mandates of incom-
ing operations to its own one just to prevent deadlocks. Such behaviour could

2This is equivalent to the use of libraries that are not thread-safe in a conventional, mul-
tithreaded environment. For example, some old versions of the standard C library (printf,
errno etc.) are not thread-safe and need external synchronization.

CHAPTER 3. CONCEPTS 22

\
_
L
\]
\/

\

A ii
i

Figure 3.6: #adapt_multi bricks pose an extreme bottleneck wherever they are
placed. At the left border of the brick network (near original resource providers),
there is a potentially high load of incoming operation invokations that can only
pass one-by-one. At the right border (near “application” bricks), an operation
may take a relatively long time and make other operations wait for it.

cause new deadlocks due to later interference with operations not having gone
through the adapter.

3.12 Strategy

Now we have gathered all technologies necessary for an efficient concurrency
model in Athomux. We have seen the benefits from optional locking and that
of lock caches mitigating “bottlenecks”. Now, an instance is required to control
automatic placement of lock caches. A strategy brick has to be designed to
analyze the brick network and to insert lock caches and lock filters wherever
necessary.

On instantiation, the lock strategist must analyze the brick network it is
responsible for by reading the strategy nest it has been connected to. It first
searches it for lock managers whose existance is necessary to make a sense
out of lock caching (otherwise, there is nothing to cache). Next, all possible
paths lock operations ($lock, $unlock, $retract) can take from or to each
resource manager through the brick network must be traced. To be able to do
this reliably, every brick on the way needs to specify attributes that tell about
abstract internal “connections” between its inputs and outputs® (i.e., what lock
operations on what brick connectors can cause corresponding operations on
what connectors on the opposite side). Only paths between lock managers
and existing lock generators (they also must identify via an attribute) must be
considered because on other paths, no lock traffic is expected. Whereever the
path splits (through a brick “connecting” one of its inputs to multiple outputs,
or by several inputs connected to an output), the strategy brick should insert
retract filters and caches appropriately (see 3.7). Application of caches and
filters not only depends on the way the path splits but also on the subpaths’
containing of lock generators. Paths that do not lead to any lock generators
are excluded from retract by a filter and not designated for further lock cache
placement.

3Such attributes are hard, if not impossible, to generate automatically. This would need
systematic brick code analyzis, what is impossible in the common case (see the Hoare calculus

[9D-

CHAPTER 3. CONCEPTS 23

=] =] f@} =
) =T e 3 el £18

Figure 3.7: Brick configurations the lock strategy brick encounters along a lock
path, and correct application of filters and caches (above the respective situa-
tion, below the solution). The “warehouse” symbolizes a lock cache, the “sieve”
a retract filter. From left to right: (1) lock generator at the end of a path (2)
A “hybrid” lock generator and lock forwarder (3) Lock forwarder with multiple
paths connected (4) a path unifier (5) A path splitter (6) A path splitter with
only one connection leading to lock generators.

(Chitn (D = =)

: : request,

lock grar:ued 0 cache, mandate=2 0 "' mandate=1 0 0 X

mandate=1 ‘ | ‘ . 1 |request, mandate=2 | | retract ignored |
: A L

0 : : 0 0 0 . conflict! vy

[] [] [] [] [] [] [V|] [[V]

Figure 3.8: Insertion of a lock cache at runtime without reset of the clients. One
client holds a lock of the lock manager with its own mandate which is 1. Now
a lock cache gets inserted that has no knowledge about locks held by clients.
The client now requests its lock again, what normally is harmless. But the lock
cache tries to obtain the lock under its own mandate (2), what causes a conflict
with the existing lock held by mandate 1.

Removal or insertion of lock caches implies deactivation of all bricks that
use resources the brick is supposed to cache. This means all bricks that are
connected to the nest the lock cache gets connected to. This is necessary since
the lock cache must track all lock requests. It must own all locks "handed on”
to client bricks, otherwise conflicts could occur due to the lock cache issuing its
lock requests with its “own” mandate: imagine a client holding a lock obtained
before the insertion of the lock cache (or see figure . For some reason, the
lock client may try to request the lock it already holds again. By operation
definition, the lock request with the same mandate as the existing lock should
be granted immediately (and not change anything). It would be if there was not
the lock cache in between. It cannot know that the lock requested has already
been granted by the lock manager in the past. It forwards a lock request with
its own brick mandate, what results in a conflict at the lock manager with the
lock originally granted to the client. The resulting retract operation would not
reach the client because the lock cache acts as a retract filter too. The range to
be retracted is not owned by the lock cache, so it ignores the retract operation.

CHAPTER 3. CONCEPTS 24

lock manager retraction filter lock cache F lock generator
=

| == et
ST (e e

- Slow connection = retraction filter forwarding

Fast connection bottleneck no lock

Figure 3.9: Optimization after lock cache placement. Lock caches A and C
signal a fast connection to the lock manager to the left, and so get removed
by the strategy brick. B and E now measure the connection “distance” to the
lock manager directly, instead of the removed caches. They each measure long
operation durations and so are kept. Now, lock cache D measures connection
quality up to lock cache B which appears as a lock manager for D. It is a fast
connection, so lock cache D gets removed. The same applies to lock cache F.

3.13 Optimization

The rules for placement of lock caches, initial or on runtime changes in the brick
network, can result in too many lock caches that may yield an overall perfor-
mance gain, but far from the optimum: a lock cache always means overhead
that may outweigh the benefits of it. Initially, lock caches are placed at any
point where they could make sense. At runtime, it is up to the strategy brick
to determine superfluous lock caches (i.e., lock caches that get their benefits
outweighed by the overhead they cause).

A brick cannot be “tested” for performance directly by calling an operation
and measuring the time it takes “through” the brick because an external brick
observer could not tell whether an operation emitted from a brick was caused by
one of its operations previously called. Besides, in distributed systems, there is
no global time, anyway. Time measurement can only take place at a single spot.
In Athomux, this means measurement of the time a single operations takes for
execution (until return), but operation execution will probably involve several
operations in different bricks. Fortunately, in case of lock caching, we do not
need to test bricks for performance one by one, it is sufficient to measure the
time of travel for operations between a lock cache and its superordinate lock
manager (that could be a lock cache, too).

One way to test connection quality is to “ping” (call a special operation that
returns immediately from) the lock manager it caches locks of. The lock cache
measures the time until the operation returns. The result of this measurement is
then published at an output nest of the lock cache for evaluation by the strategy
brick. This way, the strategy brick gains an overview of the durations for opera-
tion travel from lock cache to lock cache, and can then decide to remove certain
lock caches. For decision, the strategy brick can, for instance, use a predefined
threshold, a minimum time this “ping” operation must take to legitimate the
existance of the lock cache.

The order in which lock caches are to be removed is important. The order

CHAPTER 3. CONCEPTS 25

“from left to right” guarantees that the lock caches directly to the right of
“bottlenecks” are more likely to be kept by the strategy brick than those nearest
to lock generators (see figure 3.9). If the path to the right of the “bottleneck”
splits further, this technique keeps the number of lock caches low, and also the
number of retracts, in the case of lock generators at the ends of those subpaths
have interleaving lock requests.

The strategy brick must, of course, repeat this optimization whenever the
brick network is changed. Additionally, periodical measurements of connection
quality at all places where lock caches were removed are necessary, since bricks
could become bottlenecks at a later time. It would be an unnecessary waste of
resources to keep “sniffer” bricks at all such positions all the time. It is sufficient
to temporarily connect such a brick to a nest where a lock cache was originally
connected to. It could test the connection without slowing down other traffic
significantly. Only an increase of the “ping” time over the threshold would make
the strategy brick insert a new lock cache.

It can be temporarily very costly to insert a lock cache into a brick network,
because for removal or insertion of a lock cache it is necessary to have all locks
returned to the superordinate lock manager.

Chapter 4

Appendix

4.1 Appendix A: Nests formally

This section is only provided for deeper understanding of Athomux nests and is
not vital for the understanding of this thesis. Skip it if you are not interested.

Formally, a nest is a composition of three sets and two functions between
them. The sets are address space, data space and values, the functions are
addr : address space — data space and data : data space — values. A nest
specifies operations to (de-)allocate subsets of both functions’ domains, to lock
the functions partially, and to redefine the functions (i.e., “modify their con-
tents”). Locking of one of the resource can be viewed as a separate resource, a
second dimension of allocation. Both address and data space locking has been
merged into one operation pair, due to their close relation (often, there is the
need to atomically lock both resources).

address space is a total order of integers with a (current) cardinality of
264 walues also is a total order with cardinality of 2% (that of bytes, but a
higher cardinality can be achieved by combining multiple elements). The set
data space is not defined any closer, its character depends on the way the brick
implements it (its origin). Thus, its elements cannot be expressed directly but
only indirectly through the function addr. The definition of addr can only be
modified in the way the operations $create, $delete, and $move are defined,
the domain of data automatically changes with any modification of addr. The
“standard” behavior! of these operations keeps addr a partial, bijective function.

The lack of a definition for data space has a few side effects:

1. The operations allocating data space and modifying contents ($get, $put,
$trans, $wait) do not take a subset of data space as argument but a subset
of address space which is then mapped to a subset of data space.

IThe “standard” specification for a dynamic nest is (1) initially totally undefined, (2)
$create assigning new (not assigned until then) data space to logical addresses.

26

CHAPTER 4. APPENDIX 27

2. Locks of address space subsets analogously have to be expressed through
address space subsets.

3. For the whole duration of a data space allocation or locking, the address space
subset used for the respective operation must be fixated at least (i.e.,
read-locked), otherwise a later release of the resource or lock may become
impossible for the user.

Remark: there has been a discussion about whether to make $put take a physical
pointer as argument (that formerly has been returned by the corresponding
$get) instead of a logical address, to work around 3. Besides the fact that
this method cannot be used for $lock and $trans, the host’s physical address
space cannot be used synonymously for data space because the nest the data
originated from may reside on a different host (e.g., a different cluster node) on
which the physical address obtained is meaningless and therefore cannot identify
a subset of data space on that host. As an example, think of a #remote brick
[4] receiving a $put operation. The (local) physical buffer has to be flushed to a
network stream with a logical address as destination because a physical pointer
would have no meaning on the remote machine. So the addressed data space
still needs to be reachable through its logical address.

Bibliography

[1] Thomas Schiébel-Theuer: Athomux

[2] Thomas Schobel-Theuer: Instance Orientation
[3] Thomas Schébel-Theuer: Optional Locking

[4] Hardy Kahl: distributed Athomux

[5] ?7: DSM (Literaturempfehlung?)

[6] java.sun.com

[7] nested monitors

[8] Polymorphism

[9] Hoare calculus

28

