
The Build System of Athomux

Thomas Schöbel-Theuer

Version 0.07, 14 Dec 2004

Contents

1 Purpose 1

2 Invocation 2
2.1 Invocation in General . 2
2.2 Target specific Options . 2

3 Configuration 2
3.1 Basic Config Files . 2

3.1.1 pconf . 2
3.1.2 cconf . 2
3.1.3 target . 3
3.1.4 Buildrules Embedded in*.ath 3

3.2 Filtering . 3
3.2.1 General Filters . 3
3.2.2 Generic Shell Filters . 4

3.3 Sub-Configurations . 4

4 Internals 5

5 TODO 5

1 Purpose

Athomux uses its ownmake system for building many different variants and configura-
tions. The reason is manyfold: tools likeautoconf andautomake are taylored to user-
land, and Linux kernel configuration uses acomponent softwareparadigm. However, Ath-
omux does not only exceed the component paradigm by a LEGO-like brickware paradigm,
but also may be configured to run in different environments. Examples are guest environ-
ments running in Linux userland, or running in kernelspace, or running standalone. There-
fore we need a build system capable of producing code for each of those environments.

The current build system is however not based on specifications of build environments
or target architectures and the like, but rather allows description ofvariantsfor two phases
of the build process: the Athomux preprocessor phase configuration (calledpconf for
short), and the C-compiler phase configuration (calledcconf). For each of these phases,
any number of variants may be specified. Themeaningof a variant should be captured by
its name.

To understand this document, you should have read some basic papers on the archi-
tecture of ATHOMUX, and you should be familiar withMakefile s (some knowledge
of Perl may also help). Currently the description is very brief; you can help yourself by
reading example code. A lot of stuff is missing; this document may soon be outdated.

1

2 Invocation

2.1 Invocation in General

cd src; make
Build all systems and all variants.

cd src; make pconf_name/ cconf_name/ target_name
Build a specific target (target_name) for a specific preprocessor configuration

(pconf_name) and a specific C-compiler configuration (cconf_name).

2.2 Target specific Options

The ATHOMUX Linux kernelspace port requires a set of configured Linux kernel sources.
If not explicit specified, the build system uses the sources of the current kernel. Differ-
ent kernel sources can be specified by appendingLINSRC=/path/to/kernel/sourcesto the
make command. To specifycconf dependent kernel sources, thecconf_name_LINSRC
option can be used.

To create Linux kernel modules, a kernel-dependent tool calledmodpost is required.
Because of some portability and permission issues, the current build system uses a hack to
avoidmodpost . If you run into problems compiling theathomux.ko modules, you can
reenable the usage ofmodpost by appendingUSE_MODPOST=1to themake command.

Example:make klinux-i386 LINSRC=/usr/src/linux USE_MODPOST=1

3 Configuration

3.1 Basic Config Files

3.1.1 pconf

By creating a filepconf. mypconfname in the src directory, themake system will
notice that a new preprocessor configuration variant with namemypconfname exists. As
a result, a directory namedmypconfname will be automatically created as a subdirectory
of src .

The file pconf. mypconfname can contain arbitray makefile rules, macro defini-
tions, and so on, usually for invocation of the Athomux preprocessorpre.pl . These rules
are included in the global Makefile via an automatically generated intermediate include-
file defs.make . When you write differentpconf.* files, all of their contents will be
concatenated intodefs.make , resulting in a single set of make rules. Thus make sure to
avoid name clashes between differentpconf.* versions.

As extension of ordinaryMakefile rules, any occurence of$(pconf) in a
pconf. mypconfname will be replaced bymypconfname . However notice that this
replacement is done by the Perl script generatingdefs.make . Thus, it is possible to
create parameterized macro names like$(CFLAGS_$(pconf)) which will expand to
$(CFLAGS_mypconfname). This way, you can separate name spaces of different versions.

It is highly recommended to do that with any kind of macros which could be different
for differentpconf.* versions.

3.1.2 cconf

By creating a filecconf. mycconfname in the src directory, themake system will
be informed about the existence of a new C-configuration variant. As a result, a directory
namedmypconfname/mycconfname will be created automatically. By default, the
full cartesian product of allpconf.* andcconf.* will be created.

2

A cconf.* can also contain arbitrary makefile rules, usually for invoking the C com-
piler.

Inside of acconf. mycconfname , the pseudo-macros$(pconf) and$(cconf)
can be used to denote the names of the current pconf and cconf variant, respectively. It is in
particular recommended to parameterize makefile rules at least at the pconf level, because
of the cartesian product with newpconf.* files which might be introduced at a later time.

3.1.3 target

By creating a filetarget. mytargetname in thesrc directory, themake system will
be informed about the existence of a newmake target. As a result, you can saymake
mypconfname / mycconfname / mytargetname for any combination ofpconf.* ,
cconf.* andtarget.* (by default). When you just typemake without any parameter,
the full cartesian product of all pconfs, cconfs and targets will be built (by default).

Usually target.* will contain makefile rules for linking together an executable,
configuring and building a bootable image or the like. As before, the pseudo-macros
$(pconf) and$(cconf) can be used. Additionally, the pseudo-macro$(target) is
available for parameterization ofmytargetname .

3.1.4 Buildrules Embedded in*.ath

Further makefile rules can be added todefs.make by statements of the following form
in a *.ath source file which must appear immediatelybeforethebrick statement:
buildrules kind: makefile-rules-text....\n endrules

wherekind is one of the keywordsglobal , pconf , cconf , or target .
In a global buildrule, no pseudo-macros are defined at all. In apconf buildrule,

only $(pconf) can be used. In acconf buildrule, both$(pconf) and$(cconf)
can be used. In atarget buildrule, all three pseudo-macros including$(target) can
be used.

Notice that depending on thekind, the number of copies of themakefile-rules-textmay
vary drastically. Forbuildrules target: , the full cartesian product of all pconfs,
cconfs and targets will be generated and copied intodefs.make . Please make sure that
no name clashes can occur due to multiple unparameterized copies of the samemakefile-
rules-text.

Please try to prefer thepconf.* , cconf.* and target.* files in preference of
*.ath buildrules. Only when some specific bricks (e.g. machine- or target-specific bricks)
need additional makefile support, usebuildrules statements.

The most common usage forbuildrules is linking with external libraries, invoca-
tion of make on foreign source trees (e.g. foreign device drivers), and the like.

3.2 Filtering

The creation of thefull cartesian product of allpconf.* , cconf.* andtarget.* can
be restricted by filtering.

3.2.1 General Filters

In a pconf.* , cconf.* , target.* oder*.ath source file, you can add statements
of the form
#context pconf: regex-list
#context cconf: regex-list
#context target: regex-list
#context ath: regex-list

3

(see also the Athomux Preprocessor Guide). Theregex-list is a comma-separated
list of Perl regular expressions, each of them potentially matching thenamepart of a
pconf. name, cconf. name, target. name, or name.ath as a whole. When a regex
is preceded by! (exclamation mark), the corresponding combination of the current source
file with the matching source file will be excluded from, otherwise it will be included to the
combinations which should be built. The rules are processedin sequence, such that later
regexes will override the effects of earlier regexes.

HINT: if you want to exclude everything except a specific configuration, you can write
a rule likecontext pconf: !.*, ulinux which first excludes all existing pconfs,
and then selectively adds exactlypconf.ulinux to the combinations which should be
built.

IMPORTANT: when you specifiy contradictory rules (e.g. intarget.A you exclude
B.ath while and inB.ath you includetarget.A), the following precedence rules
apply: pconf.* < cconf.* < target.* < *.ath . A regex rule in a higher file will
always supersede a rule from a lower one.

3.2.2 Generic Shell Filters

Some build problems depend on the machine where the build process is executed. For
example, foreign architectures cannot be built on many architectures (exept you have
cross-compilers etc). In order to limit the build configuration to the current capabilities
of your system, the following context rules can also be used at anypconf.* , cconf.* ,
target.* and*.ath :
context cmd " shell-commands": list

As you will expect, it calls the shell commands in Perl backquotes and checks whether
the output of the command (after stripping the trailing newline) matches thelist (positively
or negatively as explained above).

As an example, you may check for a particular processor type by#context cmd
"uname -t": i386\n .

3.3 Sub-Configurations

Often differentcconf.* versions share a lot of common macro definitions or make rules.
In order to remove redundancy, you are advised to put common things in include files.
Whenever ainclude statement is found in one of the configuation files on a separate
line, the inclusion is performed bymakegen.pl such that the pseudo-macros valid at the
calling file are also substituted in the included file.

This way, you can not only save redundancy, but also produce sub-configurations in a
systematicway if you obey the following conventions:

cconf-include. commonname should denote a common include file for
cconf. commonname-subversion1 and cconf. commonname-subversion2
and so on.

This means, you should produce subversions of configurations by means of hier-
archical file names, where each hierarchy level is separated by dashes in the name.
For example, if you want to discriminate different machine architectures for a common
runtime environment type, you should create names likecconf.klinux-i386 and
cconf.klinux-x86_64 with a common name partklinux and a common include
file cconf-include.klinux .

This schema should be analogously extended to multiple hierarchy levels, e.g. when
sub-versioning thei386 architecture intoi386-pentium and i386-athlon or the
like. This way, you can create arbitrarily fine-grained hierarchical subversions of configura-
tions (even with different numbers of hierarchy levels at different parts of the tree) without
introducing redundancy, just by putting common parts intocconf-include. shorter-
version-name.

4

In case you need a stronger binding between different parts of a name, you can use the
dot instead of a dash for separating a hierarchical group as a whole from another group
as a whole. Examples would be version names likeklinux-i386-athlon.debug or
evenklinux-i386-athlon.debug-gdb3 when different debuggers come into play
(or the like). In such a case, please consider the use of multipleinclude statements
for independent inclusion of independent things, in order to keep things as orthogonal as
possible.

For pconf s, target s and buildrules sections of
*.ath files you should use the analogous conventions
pconf-include. commonname, target-include. commonname and
ath-include- brickname - kind . commonname where commonname may
itself be hierarchically structured.

4 Internals

The file defs.make is created by a Perl scriptmakegen.pl , which is automatically
invoked by the mainMakefile whenever one of thepconf.* , cconf.*, target.*
or *.ath is touched. Thus you should not usually have to bother with the internals.

5 TODO

A lot...
Probably the*.ath files should be organized in a hierarchy of subdirectories, by using

the directory names as parts of the brick names (similar to Java libraries). Otherwise the
management of hundrets or thousands of brick types could become a mess. Ideas for good
systematics are sought.

5

