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The goal of this thesis is to add transparently distributed system functionality to
the ATHOMUX operating system. As a proof of concept, we present prototype
implementations of network related bricks, most notaelymote_* and bricks
generating network transparent views. Building upon this, we demonstrate that
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Chapter 1
Introduction

ATHOMUX is a prototype implementation of a new architecture for operating sys-
tem which is based on two abstractions caledksandnests The programming
method of this architecture is callédstance orientation These concepts were
proposed by Thomas Schobel-Theuer. A more detailed description can be found
in[1,2,3,4].

The development of ATHOMUX is at its beginning, but functionality is increasing
steadily. Currently, it is relying on Linux as a host operating system. However,
first attempts to adapt Linux device drivers were already made by Jens-Christian
Korth [5]. Florian Niebling B] examined ways of running POSIX programs in
ATHOMUX.

Within the scope of this work, distributed systems functionality is added to the
ATHOMUX project.

1.1 Motivation

In traditional programming methods, software components usually have many dif-

ferent interfaces. That is why these components are not arbitrarily combinable.

Object oriented methods alleviate this effect by introducing abstract interfaces.

However, the system still resembles a puzzle where only a small subset of all parts
fits in another part.

Instance orientation tries to overcome these limitations of traditional programming
methods. Theestabstraction can be viewed as an address space with a number of
operations defined on it, comparable to sparse files in UNIX. The components of
functionality are calledbricksand act as transformers between nest instances. A
brick instance can have several inputs and outputs. It transforms the nest instances
on its inputs to nest instances that are offered on its outputs which can be in turn
the input of other brick instances. Therefore a certain relationship between brick
instances is implicitly given. In ATHOMUX this relationship is represented by
wires
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Bricks themselves have no control about their relationship to other bricks. This is
calledanonymity of relatiopresulting in increased modularity. The wiring is done
by specialktrategy bricks

The operations defined on nests represent a universally generic interface. There-
fore, the wiring can change dynamically and the number of valid wirings is not
limited by incompatible interfaces. This enables to better code reuse.

Functionality not only grows with the number of bricks. Much functionality comes
from different ways of combining bricks. This is comparable to a pipe-and-filters
style of programmingT{], but avoiding consuming semantics. Instead of separat-
ing consumer and producer, passive resources (e.g. memory) may live on one side,
and active resources (e.g. CPU) on the other side. Concerning combinability, the
system now is similar to the LEGD toy system.

With this new architecture, ATHOMUX tries to closely integrate the ideas of or-
ganic computing§], database system$][and distributed systems into a new op-
erating system.

1.2 Objective
This thesis focuses on the part of distributed systems. Its goal is to add transpar-
ently distributed system functionality to the ATHOMUX operating system.

* Atfirst, prototypes of bricks demonstrating distributed systems functionality
should be implemented. In particulagmote bricks make nests available
over the network to other nodess well as simple variants of timeirror
brick.

» A network transparent view of this distributed system should be generated
to show that ATHOMUX can be transparently distributed.

Bricks should be stateless wherever it is feasible, so that they can be migrated
easily to other nodes by means of dynamic reinstantiation and rewiring.

1.3 Structure

This thesis is organized as follows:

* In Chapter 2 the prerequisites and concepts are described.

ILEGO® is a trademark of the LEGO Group of companies
2In this context, a node is an instance of the ATHOMUX operating system. Note that multiple
ATHOMUX instances can run on one machine.
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» Chapter 3 introduces the implemented bricks. A short description is given
for each brick. Furthermore, problems which occurred during the imple-
mentation are discussed.

» Chapter 4 validates the implementation and gives a demonstration of its
functionality.

» Chapter 5 concludes this thesis and gives proposals for future work.




Chapter 2
Concepts

In this chapter, the necessary concepts are developed in a top-down approach, be-
ginning with network transparent views, and ending with communication methods
and the gateway to the Linux host operating system.

2.1 Transparently distributed ATHOMUX

First of all, the expression “transparently distributed” means that the system is
distributed. It can consist of many nodes that communicate and interact with each
other. The word “transparently” means that the location of these nodes is hidden.
One can access the system as if there was only one node. This is called network
transparency.

In ATHOMUX, any necessary functionality is offered by using the universally
generic nest interface. That includes communication between brick instances and
even views of the system. In order to achieve network transparency, it is sufficient
to consider this interface. Tabfe1 shows a list of all elementary operations de-
fined on nests, and tab®2 on the next page shows their signatures. A detailed
description can be found id(].

operation | description

$trans Transfer of data from physical to logical memory and
vice versa

$wait Wait until pending transfers are completed

$get Allocate physical buffer for a logical memory area

$put Signal that a previously allocated physical buffer is not
needed any more

$lock Request a lock for data or address space

$unlock Release any locks for a region

$gadr Reserve an address region

$padr Unreserve an address region

continued on next page.|.
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...continued from previous page

operation description
$create Create a defined area in logical address space
$delete Create a hole in logical address space
$move Move a logical memory area to a different address
$output_init Initialize and deinitialize an output
$input_init Initialize and deinitialize an input
$instbrick Instantiates and initializes a brick
$deinstbrick Deinstantiates and deinitializes a brick
$instconn Instantiates an input or output
$deinstconn Deinstantiates an input or output
$connect Connect an input with an output
$disconnect Removes a connection
$getconn Inquire an input or output about its connected partng
$findconn Find an input or output with a certain param value
$retract Recollect resources previously given to other bricks
Table 2.1List of all elementary operations
operation | signature
$trans (addr_t log_addr,
len_t log_len,
paddr_t phys_ addr,
direction_t direction,
prio_t prio := prio_normal)
=>
(success_t success,
plen_t phys_len)
Swait (addr_t log_addr,

len_t log_len,
bool forwrite := FALSE)
=>

(success_t success,
paddr_t phys addr,
plen_t phys_len,
version_t version)

continued on next page.|.
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...continued from previous page

operation

signature

$get

$put

$lock

$unlock

(addr_t log_addr,

len_t log_len,

bool forwrite := FALSE)

=>

(success_t success,

paddr_t phys_addr,

plen_t phys_len,

version_t version)

(addr_t log_addr,

len_t log_len,

prio_t prio := prio_none) =>
(success_t success)
[mandate_t mandate]

(addr_t log_addr,

len_t log_len,

lock t data lock := lock write,
lock_t addr_lock := lock_read,
addr_t try_addr := log_addr,
len_t try len := log_len,
action_t action := action_wait)
=>

(success_t success,

addr_t try addr,

len_t try_len)

[mandate_t mandate]

(addr_t log_addr,

len_t log_len,

addr_t try_addr := log_addr,
len_t try len := log_len)

=>

(success_t success,
addr_t try addr,
len_t try_len)

continued on next page.|.
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...continued from previous page

operation signature

$gadr (len_t log_len,

bool reader := FALSE,

bool exclu := TRUE,

action_t action := action_wait,
len_t try len := log_len)

=>

(success_t success,

addr_t log_addr,

len_t log_len)

$padr (addr_t log_addr,
len_t log_len,
bool reader := FALSE)
=>
(success_t success)
$create (addr_t log_addr,
len_t log_len,

bool clear := FALSE,
bool melt := TRUE)

=>

(success_t success)
$delete (addr_t log_addr,

len_t log_len,

bool melt := TRUE)

=>

(success_t success)
$move (addr_t log_addr,

len_t log_len,

offs_t offset,

offs_t offset_max := offset)
=>

(success_t success,

offs_t offset)

$output_init (bool destr,

bool constr,

bool clear := FALSE)

=>

(success_t success)

continued on next page.|.
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...continued from previous page

operation signature

$input_init (bool destr,

bool constr,

bool clear := FALSE)
=>

(success_t success)
$instbrick (addr_t log_addr,
name_t name,

bool constr := FALSE,
bool destr ;= FALSE)

=>

(success_t success)
$deinstbrick (addr_t log_addr,

bool destr := TRUE)

=>

(success_t success)
$instconn (struct conn_info *connl,

bool clear := FALSE,
bool constr := TRUE,
bool destr := FALSE)
=>

(success_t success)
$deinstconn (struct conn_info *connl,
bool destr ;= TRUE)

=>

(success_t success)
$connect (struct conn_info *connl,
struct conn_info *conn2)
=>

(success_t success)
$disconnect (struct conn_info *connl)
=>

(success_t success)
$getconn (struct conn_info *connl,
struct conn_info *res_conn,
index_t conn_len)

=>

(success_t success,
index_t conn_len)

continued on next page.|.
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...continued from previous page

operation signature

$findconn (struct conn_info *connl,
struct conn_info *res_conn := NULL,
index_t conn_len := 0)

=>

(success_t success,

index_t conn_len)

$retract (prio_t prio,

addr_t log_addr := 0,

len_t log_len = (len_t)-1,
addr_t try _addr := log_addr,
len_t try len := log_len)

=>

(success_t success)

Table 2.2:Signatures of all elementary operations

Theremote brick which is introduced ir2.3 on pagel4 consists of a server and

a client part communicating with each other in order to transparently forward op-
eration calls to a remote nest instance. This can be compared to tradRiemaite
Procedure Calls With the help of this brick, nest instances can be accessed from
other nodes as if they were locally present.

However, strategy nests provide information about instantiated bricks and their
wiring which includes information about instantiatesmote bricks. remote
instances represent the boundaries of a node. They have to be hidden in order to
achieve network transparency. This information resides in the contents of strategy
nests and is not considered by tieenote brick which only forwards operation

calls.

The following sections describe how network transparency can be achieved in both
cases.

2.2 Creating views

In ATHOMUX, views are special nests called strategy nests. They are created
by control_simple instances, for example. Whé&trans is issued in read
mode at a certain address, an ASCII string is returned. It describes the brick
instance at that address, including its wiring. The information about all bricks
together can represent the actual physical wiring of the system, or it may be a
virtual view. Examples for virtual views are redundancy transparent or network
transparent views.
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In contrast to network transparent views which describe a distributed system, local
views describe the brick instances and their wiring on one node. Again, this can
be the physical wiring or a virtual view.

The operations defined on strategy nests not only allow read access. It is also
possible to modify the view (e.g. instantiating bricks or wiring instances).

Furthermore, multiple views can exist in parallel. Starting with the view of phys-
ical wiring provided by the control brick, it can be transformed by adaptor bricks
to virtual views.

Generating network transparent views is one of the main tasks of this thesis. If
these views behave like local views, it will actually imply a transparently dis-
tributed system. Two bricks can then be wired like in a local view, even if they
exist on different nodes. Nesemote * bricks will automatically be instantiated

in order to connect the two bricks.

The task of creating network transparent views can be split into three parts:

1. Merge the local views of all nodes in the distributed system into one global
view.

2. The connection between the client and server part®imiote instances
has to be represented in the system view. Therefore, corresponding server
and client parts are merged to a virtuaiote instance.

3. Finally, the virtualremote instances are replaced by wires, thus hiding
node boundaries.

These three steps are described in detail in the following paragraphs.

2.2.1 Global views

In order to generate a global view, the local views have to be availedreote

bricks can be used to access the strategy nests on other nodes. They are introduced
later in sectior2.3 on pagel4. The merging procedure itself could be done by a
brick, calledstrategy_merge , thatrequires local views on its inputs and offers

the global view on its only output (see figuzel on the following page).

Considering read access, merging views means that every single brick instance in
the local views is also visible in the global view. It is possible that brick instances
on different local views occupy the same logical address. This conflict can be
resolved by assigning virtual addresses to those brick instances on the global view.
The virtual address can be incremented with each processed brick instance on
the local views. That way, it can be guaranteed that every brick instance gets a
conflict-free address.

10
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Figure 2.1:strategy_merge  brick

Write access to the global view is more complicated. In general, all operations ac-
cessing brick instances on the global view have to be routed to the corresponding
address in the corresponding local view. Therefore, for each brick instance the as-
sociation to an input nest has to be memorized in addition to the address mapping.
However, some operations require extra consideration:

$gadr and S$instbrick  : To which input should these operations be for-
warded? On which node should the address range be reserved, and respec-
tively on which node should the brick be instantiated? There is no way to
know for sure. One could implement different strategies for a decision. An-
other way is to give the operations a parameter that specifies the desired
input nest or node. However, this would partly destroy the desired network
transparency.

$connect : A connection establishment usually involves two different brick in-
stances. If these instances are located on the same node, the operation can
be forwarded regularly to the corresponding input nest. In case of location
of instances at different nodeemote_* bricks have to be instantiated
in order to represent the connection. For this reastrajegy _merge
needs to know the network addresses of each node which is connected to
one of its inputs. This information can be givendwategy merge
upon initialization of its inputs.

In every view, there is a special virtual brick instance at address 0x00 called
ATHOMUX_MAINDIRt has only outputs but does not implement any operations.
Since it is always expected at address 0x00, it cannot be assigned any other ad-
dress. Therefore, aRTHOMUX _MAINDIhstances have to be merged by build-

ing the union of all outputs.

Views are not static. At any time, brick instances can be instantiated, deinstanti-
ated or rewired by parallel accessors. There are situations where consistency of
a view is not that important, however, usually it is. Therefore, two methods that
ensure consistency in tsérategy_merge  brick are introduced:

» One could trigger a rebuild of the global view when it is needed. This can be
signaled by &lock operation call on the output astrategy_merge

11
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Still, the local views could change during the building process. To ensure
the validity of the local views, a read lock for the whole address space in
every input nest has to be requested. These locks can be released when the
global view is not needed any more which can be signaled (Suafock
operation call on the output. This method rebuilds the global view every
time from scratch, however only when it is needed.

» Changes in the local views can be detected automatically by using locks
and the retract mechanism. Firstrategy_merge  acquires read locks
on the whole address space in every input nest. As in the first method, this
ensures the validity of the local views. The global view is then built once
from scratch. When changes are made in the local views, write locks for
the concerning regions have to be acquired. Since the held read locks cover
the whole address space, they are in conflict with the requested write locks.
That causes retract callstrategy_merge  releases the read locks for
the given regions. Right after that, it requests a read lock again. Once the
modifications have been made it eventually gets these read locks. Then,
the global view can be adapted to the modifications. There is no need for
rebuilding the view from scratch. However, even if the global view is not
needed, this method adapts it every time a modification in a local view is
made.

These methods can ensure consistency only if all involved bricks use locking cor-
rectly.

2.2.2 Connected views

In the global view, theemote_server_* andremote_client_* instances

are still separated. We have to find out which client instance is connected to which
server instance. Then these two instances can be merged to a newreinoé&
instance.

Upon instantiationremote_* instances are given an identification number. This
number matches on connected server and client instances.

With this identification number it is possible to find the server and client parts
that belong together. They have to be removed from the connected view and re-
placed by a new virtualemote instance. The wires on all inputs of the client
parts and on all outputs of server parts have to be rerouted to the virtual instance.
Figure2.2on the next page shows this process.

When a$deinstbrick call occurs on one of these virtual instances, the corre-
sponding client and server parts have to be deinstantiated.

In order to ensure validity of the provided connected view, methods as described
in 2.2.1on the preceding page can be used.

12



Chapter 2 Concepts
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Figure 2.3 Hiding aremote brick

2.2.3 Network transparent views

This is the last step in creating network transparent views. We already have a
connected view. Only the virtuaémote instances still indicate a network con-
nection. In this last step, these instances are simply reduced to wires.

When a virtualremote instance is removed from the network transparent view,
all the connections on its input and all the connections on its output have to be
rewired. It has to be done in a way so that the cartesian product of the two sets
is built. This means that every brick that is connected with an input of the virtual
instance has to be wired to every brick connected to an output, and vice versa.
This might introduce many new wires. An example is shown in figu8 The
dashed line denotes node boundaries.

The$disconnect  operation has to treat these new wires differently from reg-
ular wires. One of these wires given $disconnect  represents two wires in

the input nest. However, these two wires can be represented by multiple wires in
the network transparent view. Therefore, a wire in the input nest should only be
removed if there are no related wires in the network transparent view left. Case
a) in figure 2.4 on the following page shows this situation. The wire from brick

A to brick B is removed in the network transparent view. In the connected view,

13
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Connected view Network transparent view
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Figure 2.4:Removing wires in a network transparent view

the wire from theemote brick to brick B is removed accordingly, however, the
wire from brick A to the remote brick is still necessary.

After all connections introduced by a certain virtmainote instance have been
removed, this instance has to be removed as well. This situation is shown in case
b) in figure2.4. The last wire is removed in the network transparent view. Thus,
theremote brick in the connected view along with its remaining wires have to
be removed as well.

In order to ensure validity of the provided network transparent view, methods as
described ir2.2.10on pagell can be used.

2.3 Sharing nests

Theremote brick is a virtual brick which may only exist in virtual views like
the connected view. In reality, it consists of two bricks, the client and the server
part, with a network connection between them. Fighifson the next page shows

a virtualremote brick. The dashed line denotes node boundaries.

The nestinstance on the server’s output is made available on the input of the client
part. One could say that a nest instance is shared by two nodes.

! Theclientandservemaming comes from the number of operations offered on inputs and outputs.
Operation calls may occur on inputs just as well as on outputs. However, outputs offer a lot more
functionality than inputs. Therefore the preferred direction of operation calls is from outputs
towards inputs. One could say that functionality is offered or served on the left side (provided
that the inputs are drawn on the left). That is why the left part ofréimote brick is named
server and the right part client.
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out

Figure 2.5remote brick

Thanks to anonymity of relation and an universal generic interface, it is possible
to insertremote instances anywhere in the system in order to make certain nest
instances available on other nodes.

In general, theemote brick is similar to traditional remote procedure calls. Op-
eration calls from both sides are marshalled and sent over the network. On the
other side, the packets are decoded and the corresponding operation calls are exe-
cuted. Finally, the result is marshalled and sent back again.

However, there are a few cases where special precaution is heeded:

» The operatiortrans gets a physical address as parameter pointing to a
buffer. In read mode data is transferred to that buffer whereas in write mode
data is transferred from that buffer. When marshalling, this data has to be
considered as well.

» Physical addresses must not be transmitted over the network since they are
only valid at a local machine. Thereforigget and$put have to be han-
dled separately from other operations. In the cas$geft , a temporary
buffer is created on the client side and returned with the Viagion
set tovers_undef indicating that the data is not the newest. The rest is
done by$trans . The buffer can be deleted after the correspon@imgt .
However, if the parametqario is not set toprio_none |, the content of
the buffer has to be transferred to the server first. This can be done by ex-
plicitly calling $trans

» Currently, there is no agreement concerning the allocation of mandates in
a distributed ATHOMUX system. A solution would be to assign disjunct
ranges of mandates to each node.

In order to separate the transport mechanism from the marshalling procedure, the
remote_* bricks write marshalled operation calls to a logical stream. In sec-
tion 2.5 on pagel?, we will show how a logical stream can be sent over the
network.

2.4 The mirror brick

The mirror  brick is a virtual brick as well. Unlikeemote it may connect
more than two nodes, but has similar functionality: It shares a nest instance among
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outl

T
I
inT —] !
I
I

in2 —] out2

Figure 2.6:mirror  brick with two inputs and two outputs

several nodes.

In the most simple case of having one input and one outpintpr  is reduced
to aremote brick. Once there are multiple inputs or outputs it gets interesting.

Having one input and multiple outputs means that there is one server and multiple
clients. The client part could simply beramote_client . Respectively, the
server part could consist of multiptemote_server  bricks. However, rely-

ing on point to point connections is not very efficient. Theror brick should
greatly benefit from the symmetric optional locking approach and group commu-
nication [L1, 12, 13)].

As soon as there are multiple servers, a certain replication model has to be defined.
One extreme would be using no replication at all. Another possibility would be to
replicate everything on every node. That means every input-nest afither

brick has the same contents. One could even think of models that lie between the
two extremes like those described in some of the RAdBncepts.

Once replication is used, the problem of different data versions occurs. Many con-
sistency models and synchronization methods are available. Agaimitio
brick is not restricted to any of them.

As we can see, many variants of tméror  brick implementing different strate-
gies are possible. It depends on what kind of replication and consistency model
[14] is chosen. Most of the research field of distributed systems is contained within
this brick. A simplemirror  brick with two inputs and two outputs is shown in
figure 2.6. It is not apparent what kind of replication and consistency model it
implements.

When generating network transparent viewsfror_*  instances have to be

treated likeremote_* instances. Server and client parts have to be merged to
a virtualmirror  instances which finally have to be replaced by wires. Note that
there can be more than one server and more than one client that belong together.

In this work, we are building upon the point to point communication methods
which are also used for themote bricks. No group communication is used so

2Redundant Array of Inexpensive Disks
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far. A simple mirror variant that uses locedmote_* instances is introduced
in 3.60n page3s.

2.5 Building upon Linux sockets

Theremote * andmirror_*  bricks write the marshalled operation calls to
a logical stream. So far, we didn’t address the problem of transporting a logical
stream over the network.

Since ATHOMUX is still relying upon Linux as a host operating system, we have
to interact somehow with the Linux networking concepts. We decided to use TCP
streams for communication with other nodes because they are simple, reliable,
and order conserving. However, in some cases TCP streams imply too much com-
munication overhead (e.g. mirror bricks). In these cases significant speedups are
expected when using other communication methods like UDP broadcast or multi-
cast. These optimizations might be subject for subsequent work.

By using Linux sockets, we can concentrate on the implementation of higher level
bricks. However, this dependency on Linux should be confined to as few bricks as
possible which map the functionality to the ATHOMUX nest interface. Addition-
ally, these bricks should be as simple as possible to allow easy replacements.

2.5.1 Traditional streams

Streams play an important role in operating systems (pipes, TCP, the three stan-
dard streams in UNIX, ...). Usually they are streams of bytes, from the user’s point
of view. In the case of TCP for example, the underlying transport mechanism splits
the stream in packets for sending the data over the network. At application level,
the byte stream is often assembled to packets by means of protocols.

The logical streams in ATHOMUX already support packets so that some unnec-
essary conversions between byte and packet streams can be omitted. It is even
possible to transfer holes which gives streams a functionality comparable to sparse
files in UNIX.

2.5.2 Logical streams

Logical streams are quite complex compared to TCP streams. The reason is that
the reading and writing procedure on logical streams is distributed over several op-
erations, that argadr , $padr , $create , $delete , $get , $put , $trans
and$wait .

Writer:
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Writer: Reader:
om0 am
) $gadr ) $gadr
CHIRXXYY ¢ .
) $create ) $trans
$Swait
a0 am
) $trans ) $delete
$Swait
a0 NN | !
) $padr ) $padr
am N ¢ || ¢
logical address space
D undefined and unreserved . defined and reserved
§ undefined and reserved . defined and unreserved

Figure 2.7 Writing and reading a stream

=

$gadr : Reserve an area in undefined logical address space.

n

$create : Create a defined area.

w

$trans : Transfer data from a physical buffer into the previously defined
area.

e

$wait : Wait until transfer is completed.

o

$padr : Unreserve the area in logical address space. This acts tkena
mit.

Reader:

=

$gadr : Reserve next area in defined logical address space.
$trans : Transfer data from logical memory into a physical buffer.
$wait : Wait until transfer is completed.

$delete : Throw away the read data.

a M 0D

$padr : Unreserve the area in logical address space. The data is how con-
sumed.

The operation$get and$put can also be used instead%ifans

As we can see, in both cases we begin with calling®tpa@dr operation. In order

to distinguish between reader and writdgadr and $padr require a param-
eter called@reader indicating the role. The other operations just operate on
addresses and are independent of the role.
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Figure2.7on the page before shows how the reading and writing procedure affects
memaory regions.

ATHOMUX distinguishes between addresses and memory. An address range can
be reserved without reserving any memory behind these addresses. When writing
to a stream, first an address range is reserved by cdiiadr . The memory at

this address range is not yet defined. It has to be defined by c&tiregate

before writing to it. The reservation of actual memory is done$byeate

Holes can be written to the stream by omittlgyeate  completely, or by calling
$create only on subregions of that returned Bgadr . Thereby, undefined
regions still may exist when callir§padr to complete the writing process.

Concurrent access to the stream is possible. However, if lookahead is needed,
there is a tradeoff between concurrency and consistency.$gadr operation

has a parameter calle@exclu . By setting it toFALSE the reader indicates a
lookahead request. Usually, it is a concurrent lookahead, which means that the
address range is not reserved for this reader exclusively. Other threads might read
and consume that region at the same time. That means that after a reader had
issued a lookahead, the data might not be available for consumption any more.

If other semantics are preferred, adaptor bricks can be implemented. For example,
locks could be used to prevent other threads from consuming data while doing the
lookahead. That implies some reduction of concurrency but high consistency as
well.

Another option would be an adaptor brick that uses locks only on the address

region that is read. It always consumes, regardless ofithgclu parameter, so

that other threads can continue reading the following packets. In the case of a
lookahead, it buffers the data so that it can be consumed later if desired. Ifit is not

consumed at the time of tiunlock call on the corresponding address region,

the packet is made available to other readers. This has the advantage of higher
concurrency, but also introduces corruption of data ordering.

2.5.3 Physical streams

We decided to introduce a new stream concept, called physical streams, for in-

termediate mapping. Physical streams are not intended to be broadly used. They
were introduced for the purpose of mapping logical streams to TCP streams and

should only be used in this context.

Physical streams are based on $iteans , and the$wait operation. Reading

and writing on physical streams works straight forward by calling&tiens
operation. The logical address, which is given as a parameter, is ignored. Data in
the stream has the same order as the corresponding operation calls iBuiaite.

has the usual semantics: It waits until all IO requests are completed.
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2.5.4 Mapping logical streams to TCP streams

As noted before, the conversion is done in two steps. At first, the logical stream is
mapped to a physical stream.

This task is divided into two parts. Read-only streams are considered separately
from write-only streams. A bidirectional stream has to be split into two unidi-
rectional streams before it can be converted, resulting in the advantage that some
overhead could be avoided where only unidirectional streams are needed.

Read-only streams:

Upon a$gadr call, the required amount of data is transferred from the physical
stream to a temporary buffer, residing in a temporary nest instance. All subsequent
operation calls are forwarded to that nest instance. After the correspdbmiiag

call the buffer can be deleted. Howevegadr signalled alookahead, the buffer

has to be kept for the next read request.

Write-only streams:

Upon a$gadr call, a buffer is created in a temporary input nest. All subsequent
operation calls are forwarded to that buffer until the correspongipagir call is
issued. The buffer contents then have to be transferred to the physical stream by
using the$trans operation. The buffer can be deleted afterwards.

Without further precautions, this method destroys all information about packet
borders. In order to keep them, packet border information has to be encoded
somehow in the physical stream. That can be accomplished by writing a small
header that contains the packet length to the physical stream. This has to be done
for each packet and prior to the actual data. The reader first extracts the header
and with this information it can then reconstruct the original packet.

The second step is the conversion from physical streams to TCP streams. Since
physical streams are similar to TCP streams, a mapping can be done almost one-
to-one without effort.

2.6 Issues in the existing implementation

During this work, some issues in the existing implementation emerged. It is im-
portant to explain these issues in order to understand the implementation and prob-
lems that might come with it.
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2.6.1 Memory nests

There are two different methods for memory allocation in ATHOMUX: Using a
nest with heap semantic and using a nest with nest semantic.

Nests with heap semantic are used for memory allocation at unknown addresses.
Therefore, some kind of memory management functionality has to be present.
Memory is allocated by first callinfgadr to find and reserve a free address range

in logical address space. Before it can be used, this address range has to be defined
using the$create operation. Finally a physical pointer for this address range
can be obtained by using ti$get operation.$gadrcreateget corresponds

to the classicamalloc()  function. Inputs requiring and outputs offering heap
semantic are namedrieni.

In the case of nest semantic, memory allocation is done just by Gsireate
and$get . The caller can allocate memory at any logical address within address
space. The responsibility for memory management lies on the caller side. Inputs
requiring and outputs offering nest semantic are nantreq™

Stateful bricks can usinpor meminputs for storing their state and thus become
pseudo-stateless.

2.6.2 The state of bricks

Whenever it is feasible, the implementation of bricks should be stateless so that
bricks can easily be migrated. If statelessness cannot be achieved, a pseudo-
stateless implementation should be preferred over a stateful implementation to
maintain the possibility of migration. We have to distinguish between the migra-
tion of bricks and the migration of state.

When migrating a brick, a “flush state” request is issued on the corresponding
brick. Afterwards, all state is stored in its input nests. The brick can be deinstanti-
ated, and reinstantiated elsewhere. After the brick has been connected again with
the original nests (possibly by usimgmote instances), it can read its state and
resume work.

Migrating the state information is another problem. It is easy to copy the contents
of a nest instance to another nest instance. However, it is difficult to distinguish

between state information of different brick instances which have stored their state
in the same nest instance (intermixed). The migration of state of a single brick can
be achieved by prepending a kind of logging brick memorizing where state is

stored.
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The Pointer Cachel[)] is a useful tool for implementing pseudo-statelessness:
One can allocate memory for state information itmg nesé at known logical
address (e.g. at address 0) and use the Pointer Cache to get a physical pointer
whenever access to the state information is necessary. All state information is
then automatically flushed by callifC_FLUSH However, there still are some
unresolved issues:

» The current implementation of the Pointer Cache guarantees only one valid
pointer at a time. A call t®>C_GETcan invalidate any other pointer that
was previously obtained.

* When a “flush state” request is issued, pointers that were obtained using the
Pointer Cache are invalidated. Other threads might be executing brick code
at that time and would crash when using the invalidated pointers.

A solution for both problems would be the explicit releasing of pointers. Thus,
a synchronization witlPC_FLUSHis possible. Pointers stay valid until they are
explicitly released, and 8C_FLUSHcall has to wait until all pointers are re-
leased.

3Note that state has to be stored at a known hardcoded address. Otherwise new state information
will be introduced, which is the address where the state is stored. That is why a nest with heap
semantic is not adequate for this purpose.
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This chapter describes the implementation of all bricks and how they interact with
each other. The implementation was written in a C-like language that was devel-
oped particularly for ATHOMUX. A preprocessat, 10] transforms it into plain
C-code, which can be compiled using an ordinary C-compiler. The ATHOMUX
project has its own build systerif] supporting automatic compilation for differ-

ent runtime environments. At the end of this chapter, the runtime environment and
the prerequisites for compilation are described. The ATHOMUX source code is
available at the BerliOS Open-Source-Cenfief| [

3.1 Linux Sockets in ATHOMUX

The following bricks represent the gateway to Linux, regarding socket commu-
nication. Currently, all the socket related bricks offer a physical stream output
because socket functions and stream operations can be mapped almost one-to-one
without effort. Later implementations, running in a native ATHOMUX environ-
ment, may offer a logical stream output so that some unnecessary conversions
between byte and packet streams can be omitted2(§eton pagel?).

3.1.1 device_socket_ulinux

This brick maps part of the Linux socket functionality to ATHOMUX, in particular
therecv() andthesend() function. The$trans operation uses them to send
data over the networksbrick_init expects a valid socket number@param
(syntax: ‘socket= <socket numberd. The output implements physical stream
capabilities.

— pstrm

Figure 3.1:.device_socket_ulinux
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3.1.2 device_tcp_client_ulinux

Upon instantiation it creates a TCP connection to a ser$lerick_init ex-
pects the destination address and po@param(syntax: ‘host= <host name>
port= <port number>). It usesdevice_socket_ulinux as alocal instance

for offering physical stream capabilities on the output. The brick itself is only re-
sponsible for establishing the connection. All operation calls on the output are
forwarded to the locallevice_socket_ulinux instance.

device_socket_ulinux pstrm

Figure 3.2:device_tcp_client_ulinux

3.1.3 device_tcp_listen_ulinux

Upon instantiation it listens on a port for incoming TCP connections.
$brick_init expects this port number i@param (syntax: ‘port= <port
number¥). An incoming connection can be accepted using 8ieans
operation in read mode. When the operation returns, the read buffer con-
tains the socket number of the new connection. With this socket number a
device_socket_ulinux brick can be instantiated to access the stream.

out

Figure 3.3:device_tcp_listen_ulinux

3.1.4 device_tcp_server_ulinux

This brick combines the functionality afevice_tcp_listen_ulinux and
device_socket_ulinux . It uses the first one to listen for incoming connec-
tions and the second one for stream acc®back _init expects the port num-

ber to listen on in@param(syntax: ‘port= <port number>"). The port number

is passed to the local instanceds#vice_tcp_listen_ulinux . Any TCP
connection on this port is accepted. The socket number for this new connection
is passed to the local instanced#vice_socket_ulinux which is used for
offering physical stream capabilities on the output.
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device_socket_ulinux pstrm

device_tcp_listen_ulinux

Figure 3.4:device_tcp_server_ulinux

3.2 Streams

The following bricks are stream manipulators converting between physical, logi-
cal, unidirectional and bidirectional streams. The task of multiplexing is covered
as well. Currently, the transfer of holes and lookaheads in logical streams are not
supported yet.

3.2.1 adapt_strmr  and adapt_strmw

The conversion from logical to physical streams is covex@apt_strmr  and
adapt_strmw . No information about packet sizes is extracted. Packets are
created just in the requested size.

The meminput is needed for buffering data until the write procedure on the log-
ical stream is completed. Then the buffer contents are transferred to the physical
stream.

Thetmpinput is needed for a similar reason. Data that is read from the physical
stream is buffered there until the read procedure on the logical stream is com-
pleted.

tmp — strmr

pstrmr adapt_complete2 |——

Figure 3.5:adapt_strmr
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mem —— —— strmw

pstrmw adapt_complete2 ——

Figure 3.6:adapt_strmw

3.2.2 adapt_strmr_packet and adapt_strmw_packet

Unlike adapt_strmr  andadapt_strmw , these bricks keep the information
about packet borders when converting logical to physical streams. When writing
to the streamadapt_strmw_packet encodes the the packet borders in the
physical streamadapt_strmr_packet decodes them and creates appropriate
packets that can be read.

A local instance ofadapt_complete2  is used to ensure that read and write
operations on the physical stream either occur completely or fail.

The encoding and decoding protocol uses a header that stores information about
the packet size.

struct strm_packet_header_t {
uns4 identification;
len_t length;

2

To every packet written to the stream, this header is prepended. When a packet is
read, first the header information is extracted and then the packet of correct size is
reconstructed. The identification code is always seP8P ".

mem — strmr

pstrmr adapt_complete2 |——

Figure 3.7:adapt_strmr_packet
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mem —— —— strmw

pstrmw adapt_complete2 ——

Figure 3.8:adapt_strmw_packet

3.2.3 pstrm_duplex and pstrm_simplex

Concerning physical streams, the task of splitting a bidirectional in two unidirec-
tional streams or respectively merging two unidirectional into one bidirectional
stream is accomplished Ipstrm_simplex  andpstrm_duplex

—— pstrmr
pstrm ——
—— pstrmw

Figure 3.9:pstrm_simplex

pstrmr ——
pstrm

pstrmw ——]

Figure 3.10pstrm_duplex

3.2.4 strm_duplex and strm_simplex

Like pstrm_duplex  andpstrm_simplex , these two bricks are responsible
for splitting and merging streams. The only difference is that they operate on
logical instead of physical streams.

Merging logical streams is more complex as in the case of physical streams where
read and write functionality is contained within one operation. Here, this func-
tionality is spread over several operations (s&@])[ namely $gadr , $padr ,
$create , $delete , $get , $put , $trans andPwait . Operation calls from
readers could interleave with the ones from writers.

The reader or writer role is determined at the timebgadr and$padr calls.
The association of the role with other operations is not straightforward.
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There are two ways for solving this problem:

» The interleaving can be inhibited right at the beginning.

» The role has to be associated with something else. For example one could
use the address range returnedfigiadr to distinguish the roles. That is
possible if the address ranges returned on both streams are, or have been
made disjoint.

In this implementation a local instanceadapt_strm_multi inhibits the in-
terleaving of operation calls. However, that implies a reduction of concurrency
and probably also a reduction of performance.

strmr  ——]

strmw —— | adapt_strm_multi strm

Figure 3.11strm_duplex

strmr

strm ——
strmw

Figure 3.12strm_simplex

3.2.5 adapt_strm

This brick does not implement own functionality. It uses local instances of previ-
ously introduced bricks for converting a bidirectional logical stream to a bidirec-
tional physical stream.

tmp
_,_ adapt_strmr _\_
pstrm pstrm_simplex _,_ strm_duplex strm
mem adapt_strmw

Figure 3.13adapt_strm
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3.2.6 strm_multiplex

This brick multiplexes two streams. It can be cascaded in order to multiplex more
streams. A protocol is used to encode the association of packets with the streams.
Every packet that is written is enlarged and gets a header. Respectively, from every
packet that is read the header is removed.

struct strm_mplex_header_t {
uns4 identification;
unsl channel;

h

The header consists of two fields. The first one always contains the character
sequenceSMPXas an identification. The fieldhanneldescribes the association
to the stream which is either the number 1 or 2.

Since operation calls on both outputs can occur simultaneously, a local instance of
lock _ulinux is used to achieve mutual exclusion in critical sections.

istrm —— —— ostrm1

—— ostrm2

lock_ulinux —

Figure 3.14strm_multiplex

3.3 Pipes and queues

Pipes and queues are FIFO buffers operating on streams. Pipes operate on byte
streams and queues on packet streams. The following bricks apply this function-
ality on logical streams. They have two outputs with unidirectional stream seman-
tics. One for reading and the other one for writing. Threads may be suspended
until a request can be completed, e.g. until data is available for reading.

The buffer’s size and the length of the queue are limited and fixed at runtime.
Therefore a writing thread might also be suspended until some data is removed
(read) from the buffer.

Data written to thestrmwoutput is buffered in theneminput until it is read on
the strmr output. Thestatinput is used to store state information when a “flush
state” request occurs. Thmeminput cannot be used for this purpose, because
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nest semantic is needed to store state informationZ$e2on page21). $lock
and$unlock operation calls are issued on theck input for synchronization
between reader and writer.

3.3.1 pipe

The pipe is operating on logical streams and interprets them as byte streams.
That means that packet borders are lost. The granularity of read and write opera-
tions are independent of each other.

strmr

mem ——

strmw

ilock

stat —

Figure 3.15pipe

3.3.2 queue

In a queue the packet borders are kept. Therefore reading granularity must match
the writing granularity. Theueue brick implements this semantic.

mem —— strmr
ilock — —— strmw

stat ——

Figure 3.16queue

3.4 Multiuser capabilities

Often bricks implement only singleuser capabilities on their outputs. Multiuser
capabilities can be added subsequently by putting adaptor bricks on the outputs.
What kind of adaptor brick can be used, depends on the nest semantics and the
implementation of the affected brick.

The bricks introduced in this section are using locks for synchronization between
threads. Thread mandates are used when requesting locks. A second request on
the same address but with a different mandate blocks until the address is unlocked.
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As we can see, this implementation functions correctly only if thread mandates are
distinct for every thread. Later implementations should not rely on mandates being
distinct.

3.4.1 adapt_multi

adapt_multi  prevents that more than one thread enters the brick at the same
time. When a thread enters an operation, a lock is set which is released at the end
of the operation. Therefore other threads would block in that time.

—— out

lock_ulinux

Figure 3.17adapt_multi

3.4.2 adapt_strm_multi

In some situation everadapt multi is not restrictive enough, e.g. in
the case of logical streams (sesrm_duplex in 3.2.4 on page 27).
adapt_strm_multi sets a lock at the beginning of tifgadr operation and
releases it at the end @padr to protect the whole reading and writing proce-
dure.

istrm —— —— ostrm

lock_ulinux

Figure 3.18adapt_strm_multi

3.5 remote

Theremote_* bricks are implementations of the concepts described in the pre-
vious chapter.
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Output-calls on the client side, and input-calls on the server side are marshalled
and transmitted. Additionally, the replies have to be sent back. Each task
uses its own stream. There are four streams in total, two in each direction.
strm_multiplex is used in order to multiplex streams of the same direction
so that only two streams or one bidirectional stream is left.

The current implementation always sends the wlaolgs structure, regardless

of what parameters an operation actually needs. Some bandwidth could be saved
by distinguishing between different operations, and by only sending necessary
parameters. However, that would also imply a loss of genericity. Support for new
operations would have to be added explicitly.

In order to be able to receive operation calls (input-calls on the client side
and output-calls on the server side), a new thread is started by the help of
thread_ulinux . This thread listens constantly on the corresponding readable
stream, decodes the received packets and issues the corresponding operation calls.
It also sends the results back after the call has returned.

The basiaemote_client andremote_server  bricks offer logical stream
inputs and outputs which can be wired to bricks handling the transportation over
the network. Theemote_* tcp  bricks show how this can be done in the case
of TCP connections.

It is possible to use asynchronous 10. However, it is not implemented in this ver-
sion. All IO is done synchronously. Considering high network latency, it could be
worth the effort of implementing asynchronous IO.

3.5.1 remote_client

All operation calls on the outputut are marshalled and sent regularly, except
$get and$put which are handled locally as described?ii8 on pageld. The
temporary buffers needed for the locally handled operations are allocated in the
tmpnest.

tmp —§ |—— out
thread_ulinux

4 adapt_complete2 M strm_multiplex ’:

strmw 74 adapt_complete2 M strm_multiplex ’:

strmr

Figure 3.19remote_client
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3.5.2 remote_server

All operation calls on the inpuh are marshalled and sent with no exception.

in
mem —] thread_ulinux
strmr 74 adapt_complete2 H strm_multiplex ’:
strmw 74 adapt_complete2 M strm_multiplex ’:

Figure 3.20remote_server

3.5.3 remote_client_tcp and remote_server_tcp

For simplicity reasons, brick instances handling TCP streams were included in the
remote_* tcp  bricks. Thus, the visible wiring is kept clear and manageable
for the demonstration purpose.

The serverandclient parts in the brick names have nothing to do with the TCP
connection establishment (sé@n pagel4). A remote_client_* could use
a local instance odlevice_tcp_server if desired.

In order to establish a connection, the name or address of the destination and the
port number have to be passed to the client. The server only needs the port number
on which it should listen. This information has to be passed to the operation
$brick_init encoded ir@param In the server case it has to be in the form of
“rid= <id> port= <port number>, in the other case in the form ofitl= <id>

host= <host nhame>port= <port number>. The additionalrid parameter is

used to identify client and server parts that belong together.

Local instances ofemote_client , andremote_server  respectively, are
responsible for encoding and decoding operation calls. Adaptor instances con-
vert the logical streams into a physical stream. Finally, the physical stream
is connected with a TCP stream by usidgvice tcp_* instances. A
device_mem_ulinx  instance provides memory for buffers.
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adapt_tmp

device_mem_ulinux
remote_client out

adapt_strmr_packet

device_tcp_client_ulinux

adapt_strmw_packet

Figure 3.21remote_client_tcp

remote_server

adapt_strmr_packet

adapt_strmw_packet

thread_ulinux

device_mem_ulinux

device_tcp_server_ulinux

Figure 3.22remote_server_tcp

3.5.4 remote_server_socket

If it is preferred to handle connection establishment externally, this brick can
be used instead ofemote_server_tcp . $brick_init expects the
socket number instead of the port number@nparam (syntax: ‘tid= <id>
socket= <socket numbers).

remote_server
device_mem_ulinux [ adapt_strmr_packet

adapt_strmw_packet

Figure 3.23remote_server_socket

device_socket_ulinux
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3.6 mirror

Themirror  brick is a virtual brick and is split into a server part and a client part,
as well.

The implemented mirror variant is very simple. It uses only one server and two
clients. No replication is done in this variant.

TCP connections are used for communication between clients and the server. No
communication is done between the clients. Locking is done entirely on the server
side.

3.6.1 mirror_client_1 tcp

$brick_init expects an identification number, a host name and a port number
in @param(syntax: ‘fid= <id> host= <host name>port= <port number>).
Therid parameter is used to identify client and server parts that belong together.

Upon initialization a connection to the server with the given host name and port
number is established.

remote_client_tcp | out

Figure 3.24mirror_client_1_tcp

3.6.2 mirror_server_1_tcp

$brick_init expects an identification number and port number@iparam
(syntax: rid= <id> portl= <port number>port2= <port number).

It listens on the given port numbers for incoming connections from
mirror_client_1_tcp bricks. Once the connections are established, the op-
erations issued on the client’s outputs effectively operate on the server’s input nest.
In order to synchronize the two clien®ipck and$unlock operation calls can

be issued on the client side. These calls are also forwarded to the server’s input
nest.

Therid parameter is used to identify client and server parts that belong together.
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in

remote_server_tcp

Figure 3.25mirror_server_1_tcp

3.7 Network transparency

As described ir2.2 on pageo, the task of providing network transparent views is
split into three parts:

At first, strategy nests from different nodes have to be merged. This is done by
strategy_merge . remote bricks can be used to access strategy nests on
other nodes.

strategy_netconnect merges the server and client partserhote_* and
mirror_*  instances. The result is a connected view with virreshote and
mirror  instances.

Finally, strategy_nettransparent replaces altemote andmirror in-
stances by wires and thus provides the network transparent view.

Internally, all these bricks buffer the view imeminputs using a doubly-linked
cyclic list. A read transfer at address 0 is sufficing in order to reread the wiring
and rebuild the view. Later implementations may use locks to detect changes in
the wiring, and adapt the view automatically. Local instancesdaipt_strat

are used to convefitrans operations calls issued in write mode into strategy
operations.

When building the view, it is assumed that the system wiring is a tree structure
with ATHOMUX_MAINDIRS root node. That means that all bricks with no inputs
have to be hooked tATHOMUX_MAINDIRr they will be missing in the view.
Currently, the ASCII representation of the wiring is parsed. Once an operation to
get a list of all instantiated bricks is available, this should be used instead, since it
is a lot faster.

Views can be displayed by usirsirategy_display instances.
3.7.1 strategy_merge
This brick merges two strategy nests. It can be cascaded in order to merge more

nests. Orfsconnect operations over view boundariegmote bricks are in-
serted automatically to make the connection.
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$gadr is always forwarded to the first strategy input, unless a destination is given
in the form of “dsid= <id>".

mem ——

istratl ——] — | adapt_strat ostrat

istrat2 ——]

Figure 3.26strategy_merge

3.7.2 strategy_netconnect

This brick merges server and client partserote_* andmirror_* instances
into a virtual instance. It uses thigl parameter given to these instances to detect
which parts belong together.

istrat ——

mem ——
adapt_strat ostrat

Figure 3.27strategy_netconnect

3.7.3 strategy_nettransparent

strategy_nettransparent generates a network transparent view. It ex-
pects an already merged and connected view on its input and replaces virtual
remote andmirror instances by new wires.

istrat ——

mem ——-
adapt_strat ostrat

Figure 3.28strategy_nettransparent

3.7.4 strategy_dot

As the previous strategy brickstrategy dot reads the wiring from its input.
This is done every tim&trans is called in read mode on its output. The graph
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description is then converted tiot languagé [18] and given to the caller. If the
length of the physical buffer is not sufficietrans fails.

strat ——] —— out
device_mem_ulinux [

Figure 3.29strategy_dot

3.7.5 strategy_display

This brick displays all the bricks and wirings that can be detected over its strategy
input in a separate window on the screen . It uses temporary files and external
utilities for the conversion and display procedusbrick _init expects aname

in @param (syntax: ‘fname= <file name>). Two temporary files with then
filenames fnamedot ” and “fnameps ” are created.

Upon initialization it creates a new thread which runs in a loop:

1. First it uses a local instance efrategy_dot to generate a graph de-
scription of the system in dot language.

2. Then it writes the graph description to a file namé&wmedot

3. Thedotutility is then called to convert the graph description into a postscript
file named fnameps ”.

4. Finally the generated postscript file is displayed usingisplayutility.

As soon as the window displaying the graph is closed, the loop starts over.

strat strategy_dot | — | thread_ulinux -

Figure 3.30strategy_display

1The dot language is used in tgeaphvizpackage to describe graphs
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3.8 Miscellaneous bricks

3.8.1 adapt_complete2

adapt_complete2  ensures thabtrans operations either transfer the whole
buffer or fail.

out

Figure 3.31adapt_complete2

3.8.2 merge_lock

This brick directsblock and$unlock operations to théock input. Any other
operation is directed tim.

out

ilock —

Figure 3.32merge_lock

3.8.3 map_delta

map_delta adds$move operation functionality to the inpun.

This implementation uses the cyclic doubly-linked lists of ATHOMUX to store
information about moved regions. It is not the best data structure for this pur-
pose. Often range queries similar to “what are the blocks between address1 and
address2?” occur. Later implementations should useteee or any other data
structure supporting efficient range queries.

—— out
mem —]

Figure 3.33map_delta
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3.8.4 adapt_tmp

adapt_tmp requires an input nest with heap semantics. By help of a lo-
cal map_delta instance, it offers an output with nest semantics @&&elon
page2l). The operatioricreate may not be called when the given address
range already is defined.

mem map_delta — —— tmp

Figure 3.34adapt_tmp

3.9 Foreign bricks

The following bricks have been implemented by Thomas Schébel-Theuer and
were often used in this work.

» adapt_strat
 control_simple

» device_mem_ulinux

lock _ulinux

thread_ulinux

3.10 Dependencies

Table3.1shows a list of all bricks implemented within the scope of this thesis. In
addition to the name, it gives further information about the bricks:

SL: Stateless bricks are marked with “X” here.
PSL: Pseudo-stateless bricks are marked with “X” here.
SF: Stateful are marked with “X” here.

DL: The dependency level on the Linux runtime environment is given. A “0”
means that the brick directly depends on Linux. A “1” means that the brick
does not directly depend on Linux, but uses at least one other brick with
dependency level “0”, and so forth. A “-” stands for no dependency at all.
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brick name

PSL

SF

adapt_complete2
adapt_multi
adapt_strm
adapt_strm_multi
adapt_strmr
adapt_strmr_packet
adapt_strmw
adapt_strmw_packet
adapt_tmp
demo_map
demo_merge
demo_mirror
demo_pipe2
demo_pipe

demo_ppc

demo_pps

demo_rpcc
demo_rpcs
demo_stratc
demo_stratc_init
demo_strats
device_socket_ulinux
device_tcp_client_ulinux
device_tcp_listen_ulinux
device_tcp_server_ulinux
map_delta
merge_lock
mirror_client_1_tcp
mirror_server_1_tcp
pipe

queue

pstrm_duplex
pstrm_simplex
remote_client
remote_server
remote_server_socket
remote_client_tcp
remote_server_tcp

%
X X X x| @

X X X

X X X

XX X X X X X

eNeoNeoNeoNeoNoNoNoNoNolNoNolNolNolNolNoly

NN

L

1

continued on next page.}.
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...continued from previous page

brick name SL | PSL
strategy_display
strategy_dot
strategy_merge
strategy_msconnect
strategy_netconnect
strategy_nettransparent -
strategy_stratconnect X 1
strm_multiplex X 1
strm_duplex X 2
strm_simplex X -

(%))
XX XX X X4

Table 3.1List of all implemented bricks

Dependencies between the individual bricks are presented in the following figures.
The arrows represent a “depends on” relation. Static dependencies (the using of
local instances in bricks) are shown in figl&6on the following page, whereas
dynamic dependencies (the usingbafstbrick ) is shown in figure3.35 Fig-
ure3.370n paget5 combines the previous graphs to a full dependency graph.

adapt_multi

—

strategy_msconnect device_mem_ulinux

strategy_stratconnect remote_server_socket

remote_client_tcp

strategy_merge

remote_server_tcp

Figure 3.35dynamic brick dependencies
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strategy_nettransparent

adapt_strmr

adapt_strm_multi lock_ulinux

adapt_strmw_packet

adapt_complete2

remote_server_socket adapt_strmr_packet

remote_server strm_multiplex

remote_client

mirror_client_1_tcp N remote_client_tcp

device_tcp_client_ulinux device_socket_ulinux

~

remote_server_tcp udaptitm p

’ mirror_server_1_tcp

device_mem_ulinux

strategy_dot

device_tcp_server_ulinux
strategy_display

thread_ulinux

strategy_msconnect device_tcp_listen_ulinux

strategy_stratconnect

Figure 3.36static brick dependencies
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strategy_stratconnect
device_tcp_listen_ulinux

strategy_msconnect

device_mem_ulinux thread_ulinux
strategy_display

strategy_dot

device_tcp_server_ulinux

remote_server

mirror_server_1_tcp J remote_server_tcp

remote_server_socket

device_socket_ulinux

strm_multiplex r_\' lock_ulinux

adapt_strmw_packet

strategy_merge adapt_strmr_packet
remote_client_tcp
mirror_client_1_tcp device_tcp_client_ulinux

adapt_complete2
remote_client
adapt_strmw

adapt_strmr

adapt_strm

strategy_netconnect

strategy_nettransparent

adapt_strat pstrm_simplex adapt_strm_multi

Figure 3.37static and dynamic brick dependencies

3.11 Pseudo-statelessness

In order to achieve true pseudo-statelessness, bricks may not have local instances
of bricks that offer any passive or active resources (elgck ulinux or
device_mem_ulinux ). One of the main tasks of this thesis is a network trans-
parency demonstration. This involves many bricks and a complex wiring. For the
purpose of a meaningful demonstration, some of the concerning bricks use local
instances of resource offering bricks. Whereas the wiring is kept as simple as pos-
sible thereby, it also introduces stateful bricks. However, these stateful bricks can
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be made pseudo-stateless in the future by simply using accordingly wired inputs
instead of the resource offering local instances.

3.12 Assumptions

Certain assumptions have been made during the implementation. While the im-
plemented bricks are functioning correctly during demonstration, they could fail
in the general case when these assumptions do not hold.

» A control_simple instance is expected at address 0x1000.

ATHOMUX_MAINDIS expected at address 0x00.

 control_simple is expected to be multiuser capable.

» There is an agreement about mandate allocation in a distributed ATHOMUX
system.

3.13 Workarounds

Since the ATHOMUX environment is still missing many features, some
workarounds were necessary:

 $output_init is not called on local outputs. This has to be done manu-
ally in $brick_init

* Sometimes it is necessary to cébrick_init separately for each lo-
cal brick instance in order to pass differe@param for initialization.
Currently, there exists only one macidl{T_ALL INSTANCES() ) that
deals with all local instances at once. Therefore, all bricks requiring initial-
ization have an output calladit. Calling $output_init on this output
will do the initialization instead o$brick_init

» Parameter names in ATHOMUX functions and parameter and variable
names in ATHOMUX macros may conflict with outer names. Currently,
neither the preprocessor nor the C compiler output warnings in that case.
Since the generated code could lead to unintentional behavior, and the
sources of these failures are hard to find, it is absolutely necessary to make
these names unique. In this work, it is done by prefixing all concerning
names with the enclosing function or macro name:
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@.define foo(addr_t start)
{

len_t bar;

}
This would be replaced by:

@.define foo(addr_t _fooprefix_start)
{

len_t _fooprefix_bar;

3.14 Runtime environment

So far, ATHOMUX runs in userspace Linux as a guest operating system. Linux
plays the role of a host operating system. This has the great advantage that we
don’t have to bother with hardware drivers and can concentrate on the develop-
ment of higher level bricks. Nevertheless, on the long term it is the goal to run
ATHOMUX independently.

Most bricks would already function in a native ATHOMUX environment. The
number of bricks that still depend on the Linux environment is kept to a minimum.
Table3.1on paged0lists all bricks with dependency information.

Thegraph_disp brick has additional requirements on the runtime environment
that might not be provided on a typical Linux system. It usesdibigorogram for
translating a graph description given in dot language into a postscript file. This
postscript file is then displayed using tbisplay utility. Both tools have to be
installed on the systenalotis part of thegraphvizpackage 18] anddisplayis part

of theimagemagiclpackage 19].

47



Chapter 4
Demonstration

In order to demonstrate and validate the implemented bricks, several test cases and
demonstrations have been prepared in so called demo bricks. The names of all
these demo bricks begin witldémo_". Demo bricks are special bricks that can

be loaded and executed by using &t¢ tool. In this chapter, every demonstration
procedure is explained and for each demo brick its dependency graph is shown to
give a notion what bricks are part of the demonstration.

4.1 Instantiating and running demo bricks

The implementation of demo bricks has to follow two rules:

* It must have an input callestrat Before theSbrick_init operation is
called, this input is wired to the strategy output of twntrol_simple
instance at address 0x1000.

» The only operation that is called on the demo brickbizick_init
Hence, this operation has to contain the test code.

abl stands for “"ATHOMUX Brick Loader”. It implements th@ain() function
so that the C-compiler can generate an executable. With the help of this tool, it is
possible to instantiate and run the demo bricks.

The call syntax of this executable is:
abl <brick name> [<parameter>]

At first, abl creates aontrol_simple instance at address 0x1000. After
that, it uses the strategy output adntrol_simple to instantiate the demo
brick with the name given as first parameteratol . The second parameter is
passed t&brick_init in @param As soon asbbrick_init returns, the
bricks are deinstantiated aatll terminates.
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4.2 Helper bricks

The following bricks are used in some demo bricks in order to easily create com-
plex test situations. They are not intended to be used elsewhere.

4.2.1 strategy_msconnect

This brick implements a strategy for offering shared memory to an unlim-
ited number of clients. Any client can connect to the given port via a
remote_client_tcp instance and thereby gets access to the nest instance of-
fered bydevice_mem_ulinux . Itis used indemo_strats to demonstrate

the correct functioning ofemote_*  bricks.

$brick_init expects a port number and a remote identification number in
@param (syntax: ‘fid= <id> port= <port number>). At first, it instanti-
ates adevice_mem_ulinux and aadapt_multi brick. Then it listens
on the given port for incoming connections. For each connection, it instanti-

ates aremote_server_socket brick, and wires it to theadapt_multi

instance. The remote identification number is passed to each newly instantiated
remote_server_socket . Figure4.2 on the following page shows how the
dynamically instantiated bricks are wired.

Deinstantiation of the device_mem_ulinux , adapt multi , and
remote_server_socket bricks has to be handled externally.

strat ——]

device_tcp_listen_ulinux

thread_ulinux

Figure 4.1:strategy_msconnect
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device_mem_ulinux adapt_multi remote_server_socket

remote_server_socket

Figure 4.2msconnect example

4.2.2 strategy_stratconnect

Like strategy _msconnect , it listens on the given port for incoming connec-
tions and dynamically instantiateemote_server_socket bricks. Again,
$brick_init expects the port number and remote ID@param (syntax:
“rid= <id> port= <port number>). However, this time the input of each in-
stantiatedemote_server_socket bricks is wired to the strategy output of
the control_simple instance at address 0x1000. Figdré on the next page
shows how the dynamically instantiated bricks are wired.

It is used indemo_strats , demo_stratc_init , anddemo_stratc  in
order to givedemo_merge easy access to the remote strategy nests.

Deinstantiation of th@adapt_multi , andremote_server_socket bricks
has to be handled externally.

strat ——]

device_tcp_listen_ulinux

thread_ulinux

Figure 4.3:strategy_stratconnect
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strat — r--
adapt_multi remote_server_socket

remote_server_socket

Figure 4.4:stratconnect example

4.3 Dynamic nests

demo_map tests the functioning ofmap_delta . For this purpose, a
device_mem_ulinux instance is wired with anap_delta instance. Then,
multiple $move operations are performed on ttrep output ofmap_delta and
their result is checked.

device_mem_ulinux

demo_map i‘
map_delta

Figure 4.5.demo_mapdependencies

4.4 Pipes

demo_pipe demonstrates FIFO functionality in the case of a logical pipe. It uses
apipe instance and writes some strings of different length to the pipe. After that
the pipe is read and the strings are printed to the screen.

51



Chapter 4 Demonstration

adapt_complete2

adapt_tmp \' map_delta

demo_pipe device_mem_ulinux

lock_ulinux

pipe

Figure 4.6.demo_pipe dependencies

demo_pipe2 uses a logical pipe as well, but in this case the demonstration con-
centrates on the multiuser capabilities. Two threads are created, one for writing
to the pipe, and one for reading. It is shown that the reading thread blocks when
the pipe is empty, and that it wakes up after the writing thread has written to the

pipe.

adapt_complete2

adapt_tmp \' map_delta

/d:\/ice_mem_ulinux

lock_ulinux

demo_pipe2

pipe

thread_ulinux

Figure 4.7:demo_pipe2 dependencies

4.5 TCP connection establishment

This demonstration is divided into two brickdemo_pps anddemo_ppc. A
TCP connection is established and data is sent in both directions over the offered

physical stream.
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demo_pps expects a port number as parameter (syntgort= <port num-
ber>"). It instantiates adevice_tcp_server_ulinux brick which listens
on the given port for an incoming connection.

demo_ppc expects a host name and a port number as parameter

(syntax:  ‘host= <host name> port= <port number>). It uses a
device_tcp_client_ulinux instance in order to connect to the given
destination.

After the connection establishmet¢mo_ppc it waits for user input orstdin
The string is then sent wemo_pps where it is slightly modified and finally sent
back and printed to the screen.

device_socket_ulinux

. . KJ
demo_pps [ ~| device_tcp_server_ulinux \

device_tcp_listen_ulinux

Figure 4.8 demo_pps dependencies

demo_ppc [ ~p| device_tcp_client_ulinux [~ device_socket_ulinux

Figure 4.9:demo_ppc dependencies

4.6 Remote test

This demonstration is also divided into two partiemo_rpcs plays the server
role anddemo_rpcc the client role. It is a simple test for themote *
bricks.

demo_rpcs expects a port number as parameter (syntgart= <port num-
ber>"), whereasdemo_rpcc expects a host name and a port number (syntax:
“host= <host name>port= <port number>). The connection is established as
in 4.50n the preceding page.

The remote server is connected tdevice_mem_ulinux  instance. Any oper-
ation call issued by the client should arrive at this brick.

In order to validate this scenario, the client performs three tasks onits input nest:

1. It allocates some memory in the input nest. This is actually done on the
server side due to the remote brick.

2. It writes a string to the address it got from step 1.
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3. It reads again from this address and compares the result with the original
string.

Since no buffering is performed and the input nest is connected to the
device_mem_ulinux  instance over aemote instance, the string has to be
transferred over the network in step 2 and in step 3. From the client’s point of view
the input nest is just a nest instance it writes to and reads from. Due to anonymity
of relation, it does not matter whether it is a lockvice_mem_ulinux  in-
stance or a remote instance.

adapt_strmr_packet

adapt_strmw_packet

demo_rpcs

remote_server_tcp

adapt_complete2
strm_multiplex ”_\'

device_socket_ulinux

device_tcp_listen_ulinux

Figure 4.10demo_rpcs dependencies

lock_ulinux
remote_server

device_tcp_server_ulinux

adapt_strmr_packet

adapt_strmw_packet

adapt_tmp

adapt_complete2

strm_multiplex N lock_ulinux

thread_ulinux

device_tcp_client_ulinux M device_socket_ulinux

demo_rpce

\4 remote_client_tcp

]
/

device_mem_ulinux

Figure 4.11demo_rpcc dependencies

4.7 Network transparency

The network transparency demonstration is split into four demo
bricks: demo_strats , demo_stratc_init , demo_stratc and
demo_merge.
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The first three bricks build a system with distributed shared memory function-
ality. Each brick is instantiating atrategy_stratconnect and thus of-
fering a connection to the locabntrol_simple instance to any other node
(seed.2.2on pages0).

Everyremote_* instance in the system is given an identification in the form of
“rid= <id>" that associates the server part with the client pddmo_merge
uses this identification to generate global and network transparent views.

demo_strats plays the role of a server and only instantiates a

strategy_stratconnect . Thereby, the strategy nest offered by the
control_simple instance is made available to others. Other bricks are
instantiated later using a connection to this strategy nest.

adapt_strmw_packet

J adapt_strmr_packet

adapt_complete2

J remote_server_socket device_socket_ulinux

remote_server

strm_multiplex N lock_ulinux

thread_ulinux

device_tep_listen_ulinux

strategy_

demo_strats

strategy_display strategy_dot device_mem_ulinux

Figure 4.12demo_strats dependencies

demo_stratc_init establishes a connection to tlwntrol_simple
instance on the server. It uses this strategy nest to instantiate a
strategy_msconnect on the serverstrategy_msconnect instantiates

a device_mem_ulinux  brick and makes it available to others (s&&.10on
page49).
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device_tep_client_ulinux
device_socket_ulinux

adapt_strmw_packet

adapt_complete2

strm_multiplex

remote_client_tcp

£

remote_server_socket

device_tep_listen_ulinux .

strategy_dot

E
=

strategy_msconnect ‘\v

demo_stratc_init

strategy_stratconnect

thread_ulinux

strategy_display

Figure 4.13demo_stratc_init dependencies

demo_stratc plays the role of a client. It connects to the
device_mem_ulinux instance on the server. The user can issue com-
mands on the console in order to allocate, write and read memory regions.

* help : Prints a short list of available commands.

» alloc <len>: Allocates a memory block of given length and returns its
address.

» write <addr> <string>: Writes a string to the given address. The number
of bytes actually written is returned.

* read <addr> <len>: Reads from given address and prints the content.

device_tcp_client_ulinux

device_mem_ulinux

device_socket_ulinux

strategy_dot

J remote_client_tcp remote_client

X/
/A adapt_strmr_packet \
remote_server_socket | '
AN
adapt_strmw_packet ,v

Kz
remote_server

strategy_display

strm_multiplex N lock_ulinux
adapt_complete2

demo_stratc

strategy_stratconnect

device_tep_listen_ulinux

Figure 4.14demo_stratc  dependencies
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demo_merge finally creates a global view of the system. It connects to the

control_simple instance on all other nodes and usésategy _merge to
merge the views. The server and client parts ofrédmote_* bricks are merged
by strategy_netconnect . At the end,strategy_nettransparent

removes all virtuatemote instances from the view and thus generates the net-
work transparent view.

In order to demonstrate that the network transparency is functioning correctly even
when using modifying operations, the following tasks are performed:

1. Instantiating alevice_mem_ulinux  brick on a remote node.
2. Connecting this instance STHOMUX_MAINDIR
3. Disconnecting and deinstantiating it.

4. Disconnecting and deinstantiating the virtual remote brick responsible for
the connection between the server and the client node using the connected
view.

5. Reconnecting them by issuing a sin§lennect operation call in the net-
work transparent view. A new virtual remote brick is inserted automatically
to make the connection possible. The new connection can be tested by issu-
ing commands (alloc, read, write) on the client side.

adapt_tmp map_delta
J device_tcp_client_ulinux M device_socket_ulinux

device_tcp_server_ulinux K device_tep_listen_ulinux

adapt_strmr_packet

adapt_multi

lock_ulinux

adapt_strmw_packet adapt_complete2
remote_client_tcp

remote_client strm_multiplex

strategy_merge remote_server_tcp remote_server

thread_ulinux

demo_merge

strategy_display strategy_dot device_mem_ulinux

strategy_netconnect

adapt_strat

strategy_t

Figure 4.15demo_merge dependencies

To run this demonstration, the individual parts have to be started in the following
order:

1. demo_strats
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2. demo_stratc_init

3. demo_stratc

4. demo_merge

Severalstrategy_display

system.

Figure4.200n page51 shows the merged and connected view which is provided

by thestrategy_display

Figure4.21on pages2 shows the network transparent view which is provided by

thestrategy_display

instances in all parts are used in order to display
the views at the different stages. Figu#e$6- 4.19show the local view for each

brick at address 0x023000 in this figure.

brick at address 0x025000 in this figure.

remote_server_socket
0xa000
socket=7 rid=1"

control : in

control : strat

strategy_msconnect
0x6000
‘port=20001 rid=2’

remote_server_socket
0x5000
socket=4 rid=1"

control : in

control_simple
0x1000

‘self-booted-by-default-init”

control : strat

strategy_display

control : strat
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Chapter 4 Demonstration

4.8 Mirror test

demo_mirror is a demonstration for a simple mirror brick that uses one server
and two clients. A string is written to the server through one client, and is
read again through the other client. Furthermore, a connected view with virtual
mirror  instances, and a network transparent view are displayed on the screen.

adapt_multi

J strategy_display

strategy_dot N device_mem_ulinux

thread_ulinux

adapt_complete2

demo_mirror

mirror_server_I_tcp remote_server_icp

mirror_client_I_tcp

strategy_netconnect remote_client_tcp
strategy_nettransparent adapt_strat

>

adapt_strmr_packet

device_tep_server_ulinux device_tep_listen_ulinux
device_tep_client_ulinux device_socket_ulinux
adapt_tmp map_delta

Figure 4.22demo_mirror dependencies
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Chapter 5

Conclusion

5.1 Summary

The demonstration programsdemo_strats , demo_stratc init ,
demo_stratc anddemo_merge as well asdemo_rpcs anddemo_rpcc

have shown that the implemented remote bricks are functioning as expected and
that they can be inserted anywhere in the system.

The functioning of a simple mirror variant was demonstrated by
demo_mirror

Multiple views were merged bystrategy_merge and network trans-
parency could be achieved by usingtrategy netconnect and
strategy_nettransparent . This was demonstrated byemo_merge
anddemo_mirror . The network transparent view is fully functional which was
also demonstrated ldemo_merge.

Many features in ATHOMUX are still missing. Workarounds had to be imple-
mented to bypass some necessary features that already exist in concepts, but
are still missing in the current ATHOMUX environment. In near future, these
workarounds might not be needed any more.

5.2 Future work

In this work, the implementation focussed rather on functionality than on perfor-
mance. Many optimizations are still possible:

» More efficient data structures can be used instead of doubly-linked cyclic
lists. E.g.b*-trees would be more appropriate for range queries, which are
often issued.

» Asynchronous IO iremote_* bricks could alleviate the effect of high
network latency.
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Chapter 5 Conclusion

» Using group communication should improve performance of network re-
lated bricks, especiallgnirror_*

* Instead of parsing the ASCII output of strategy nests, operation calls should
be used once they are available.

The bricks implemented in this work represent only the basis of transparently
distributed ATHOMUX. To cover the whole domain of distributed systems, would
clearly go beyond the scope of this thesis. However, there are two issues closely
related to this work that need further efforts.

* Only a simplemirror  variant could be implemented. Further research is
needed here, especially in the direction of replication and fault tolerance.

 Full write support in network transparent views should bring a truly trans-
parently distributed ATHOMUX. The concepts for achieving this have been
described in chapter 2 whereas the implementation still needs some work.

During the implementation and testing procedure, the limitation or rather the
inappropriateness of available debugging tools emerged. Bricks are written in
ATHOMUX code which is transformed to C code by a preprocessor tool. During
the debugging of bricks, only the C code is available. One has to do the mapping
to corresponding parts in the ATHOMUX code by hand, which is very tedious.
Another issue is that breakpoints can only be set at a certain point in a brick. Sev-
eral instances of the same brick are not distinguishable. For that reason and since
the wirings are getting more and more complex, there is a need for a debugger
tool especially designed for ATHOMUX. It should provide the user with views of
the system astrategy_display does, but with the possibility of interaction.
This should significantly reduce development time. A visual brick editor would
be of great help as well.
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