On Variantsof Genericity

Thomas Schdbel-Theuer

Universitét Stuttgart
E-mail: schoebel @ nformati k. uni -stuttgart. de

Abstract

We discuss some general styles of human thinking which
could be useful at the design stage of a software project.

The central idea of genericity (as viewed by us) is to re-
duce redundancy in a software structure. This leads not only
to better software structures, but also improves economy (by
consuming less human resources). Reduction of redundancy
should start in early phases of the development process, in
particular in the design stage. Our concepts have proven
valuable for a novel operating system design.

We draw some important conclusions: universal gener-
icity and compositorical genericity are regarded as supe-
rior to extensional genericity in many cases. Since OO
inheritance is a subcase of the latter, we regard it as an
optional subordinated concept. We show that the first two
concepts can simulate functional programming (FP) and
aspect-oriented programming (AOP), among others.

1 Introduction

The term “genericity” has already a more or less ac-
cepted informal meaning. In [Mey88], Meyer uses the
term approximately as a synonym for ”parametric polymor-
phism” (of types) [CW85]. The common use of “generic-
ity” shows up e.g. in the keyword generi ¢ in Ada. We
argue that the term “genericity” should be assigned a more
general meaning, such that parametric polymorphism of
types becomes a special subvariant of genericity. Addition-
ally, the scale is extended: while parametric polymorphism
is mostly used for programming in the small (e.g. generic
lists or other abstract data types), our notion of genericity
fits better for programming in the large.

We identify some subtypes of genericity, called univer-
sal genericity, compositorical genericity, and extensional
genericity, and we give some examples for them, most from
our research on operating system architectures. We argue
that the term "genericity” should not be used standalone,
but rather be combined with a qualifying attribute such as

» LI 1]

“universal”, “compositorical”, “extensional” or "paramet-

ric” (or probably a combination of such attributes for fur-
ther fine-grained distinctions). This way, we are open for
further variants of genericity which may be discovered in
the future.

An overview on variants of genericity:

Genericity
(general)

Non-Parametric
\ Genericity
Universal Genericity c itorical see Inferer\(?z\. .
Genericity Genericity

In short, the basic idea of this paper is to reduce redun-
dancy not only in the software structure of a complex sys-
tem, but to start with redundancy reduction as early as pos-
sible, in particular in the design stage.

A great deal of motivation for redundancy reduction is
supplied by economical arguments: if the same function-
ality can be implemented with less redundancy, less man-
power is required for the project in total.

The paper is organized as follows: section 2 explains
general genericity and motivates it. Section 3 treats sub-
variants of parametric genericity which are useful as styles
of thinking in early design stages. Section 4 shows ex-
amples from an operating system design based nearly ex-
clusively on universal and compositorical genericity. Af-
terwards, simulation of functional programming (FP) and
of aspect oriented programming (AOP) by our concepts is
sketched. Section 5 concludes the paper.

—_

2 General genericity

Any automatic tool or systematic method, which allows
for reduction of human-visible redundancy in some soft-
ware structure without decreasing functionality, is called a
generic tool or a generic method and subsumed under the
general notion of genericity.

Note that reduction of redundancy need not take place in
a system as a whole, but may be restricted to parts, subsys-
tems or to particular views on a system. The term redun-
dancy is not meant in a formal information theoretic sense,

but informally referring to "amount of code” or “effort for
the desired functionality”. We are talking about concepts
in early phases of a software project, graspable by humans,
thus formal definitions would be hard to apply.

Our informal definition of genericity is extremely broad,
deliberately. If we are not careful, probably almost any-
thing could be subsumed under it!. Because of that, we
strongly advise to avoid genericity as a standalone term, but
rather use it in combination with qualifying attributes; e.g.
“universal” as an attribute to genericity is not a property of
genericity”, but a restricted type of genericity.

Reduction of redundancy may be seen as a very general
guiding principle on many things done in software engineer-
ing. Humans critically depend on reduction of redundancy,
because of our inability to do much” [DDH72, Dijkstra’s
section 2]. Without reduction of redundancy, we have al-
most no chance against the complexity of extremely large
systems. We can improve the ratio between human ability
and system complexity by adding manpower to a software
project and by parallelizing work on different regions of that
system, but practice has shown the limits of such an ap-
proach. Another way is to reduce redundancy of the project,
such that it becomes smaller and can be handled with less
manpower. There is clearly an economic argument for re-
duction of redundancy. But there is also an argument from
tractability: less redundancy increases the scope of what can
be handled by human groups.

In order to approach our goal of reducing redundancy in
a complex software project, we have to start in rather early
stages of the project, in particular we have to reduce redun-
dancy during the design stages. Note that there are often
many different ways for reduction of redundancy. This is
what the rest of this paper is about.

3 Variantsof parametric genericity

Parametric genericity is a rather broad subclass of gener-
icity. It subsumes anything which could be done with for-
malized substitution mechanisms. Since the early days
of computer science, hundreds of substitution mechanisms
have been invented and implemented. Macro processors
have been used very early. Lisp is one of the oldest pro-
gramming languages based on substitution as a guiding
principle, dating from the 1950s. Parametric genericity may
be characterized as any tool or formal method, which sub-
stitutes placeholders (of any kind) by some meaningful enti-
ties such as terms, expressions, graphs, strings or whatever.
It is independent from substitution time, whether static (at
system generation time) or dynamic (at runtime). Formal
mathematical substitution models such as the A-calculus
[Fie88] have been used even before the invention of the

1Future improvements should try the reduce that risk.

automatic computer. Today, a rich variety of typed and
untyped substitution models has been examined [SPVE93].
Note that parametric polymorphism of types [CW85] is
just one special incarnation of parametric genericity, and
by far not the only useful one for software architects. In-
clusion polymorphism (also called subtype polymorphism)
is just another example, which may be obtained by com-
bining compile-time substitution with late binding at run-
time (where late binding may be characterized as special-
ized evaluation order on runtime substitutions). Even the
rather powerful type system of Haskell [Tho96] should be
regarded as a specialized subclass of parametric genericity.
Although a macro processor such as the C preprocessor or
Gnu m4 is a rather simple tool, it may not only simulate
most transformations and substitutions on data types? (pos-
sibly with slightly different concrete syntax), but may ex-
ecute rather sophisticated transformations on the program
text itself which go beyond the capabilities of generi cs
in Ada (of course, they provide less type safety and often
induce other problems we don’t want to discuss here).

While theorists ask for the formal power of various mod-
els, software engineers ask for practical application sce-
narios and for improvements that could arise for solutions
to their problems, and for recipes how to apply a method
fruitfully. In order to describe practical application areas
and scenarios, we look at some more specialized applica-
tion styles of parametric genericity we have identified when
working on a novel operating system design [ST02, STO03].
Our subtypes of parametric genericity should be regarded as
styles of thinking for humans at a concept finding stage in
a software project, which goes beyond architectural styles
[SG96]. By the term "style of thinking”, we mean patterns
of reasoning on an emerging (not fully constructed or un-
derstood) system, recognizable and graspable by humans.

The application area for our styles of thinking will also
cover earlier stages like requirements engineering (or do-
main engineering). Some variants of genericity, in partic-
ular universal and compositorical genericity, may lead to
a paradox: employing them may not only decrease redun-
dancy, but also increase functionality and thus over-satisfy
original requirements. In such a case, it is often fruitful to
reconsider requirements in an evolutionary mode not only
for omissions and slight modifications (e.g. modification of
the exact way how a recognized problem should be solved),
but also for improvements of the ratio price / functional-
ity. Increased functionality may be cheaper to realize than
sticking with a particular problem solution which had been
inadvertently fixed as a requirement, but could be changed
with low costs.

2Even simulation of automatic type inference (cf. Haskell or ML) is
principally possible with macro processors, at least if they are Turing-
complete, such as is known from the TEX macro processor.

3.1 Universal genericity

Universal genericity is the ability of an interface or an
implementation to simulate other interfaces or implementa-
tions in a rather simple way.

The term “simulate” is used informally in the broad
sense of “enabling the same functionality as ..., but prob-
ably in a different way”. By the informal term “simple”,
we mean that additional coding effort for interpreting the
simulation results or for converting simulation input must
be substantially smaller than the coding effort spent in the
simulating device itself. Conversions can be usually carried
out by rather simple substitutions, thus universal genericity
is regarded as a subclass of parametric genericity.

Universal constructs are found in computer science in
many places: a universal turing machine is one that can sim-
ulate any other turing machine. An interpreter for a parser
may deal with any deterministic context-free language, by
providing a parser table as input which describes a push-
down automaton. Universality is always relative to the uni-
versum of concepts which can be simulated; in the last ex-
ample this is only the class of deterministic context-free lan-
guages, but not the full class (for example, most ambiguous
languages cannot be simulated).

A good example for a practical application of univer-
sal genericity is the file 10 interface of Unix [RT74]: the
read() and write() system calls are equipped with a
| engt h parameter. Any calls may be individually supplied
with different actual parameter values, so the same file may
be read by different consumers in differently sized patterns.
Before the Unix concept of a file as unstructured sequence
of bytes was born, operating system interfaces usually have
dealt with different types of files, such as record-structured
files. For simulation of record-structured files, we just have
to supply the record length constantly as actual value for
the length parameter at each call to r ead() . This causes
a slight increase in runtime overhead, but the benefits of
this type of universality actually do more than outweigh this
overhead and have been widely accepted all over the world:
not only the internal implementation in the Unix kernel is
easier and less redundant as if it had to deal with multiple
file types, but even the application programs benefit from a
smaller number of system calls and from increased flexibil-
ity.

This example of universal genericity shows that "less”
can in effect produce "more”: by elimination of the concept
of a "record”, the system is both simplified and becomes
more flexible. Thus, universal genericity is highly desir-
able3. Whenever a chance for applying universal generic-
ity is discovered, this should be preferred over other kinds

SNote that higher-level abstractions are not precluded by universal
genericity — we just argue that they should be based on a small number
of universal low-level abstractions.

of genericity as treated in the next subsections. Currently,
we know no general formal method for achieving univer-
sal genericity. However, we encourage system designers to
systematically look for opportunities for universal generic-
ity. Good candidates are concepts which are “similar” to
each other.

Note that just taking the union of multiple interfaces to
form a new single interface is nearly the opposite of the
spirit of universal genericity: doing so will not reduce inter-
face complexity in general. With true universal genericity,
all or nearly all methods provided by the interface should
contribute to any of the possible simulations. Good de-
signs will provide orthogonality on the methods: no method
could be simulated by combination of others.

Universal genericity may be achieved by employing
both abstraction and generalization in the sense of Navrat
[Nav96], but not all abstractions or all generalizations or
all combinations thereof will necessarily lead to univer-
sal genericity (e.g. lead to extensional genericity instead).
Some types of universal interpreters may employ general-
izations in which the interface is not extended, but rather
shaped very differently.

A very loose and incomplete characterization of univer-
sal genericity in OO terms could sound like: design a su-
perclass, for which never a subclass will have to be imple-
mented, because the (nevertheless rather simple) implemen-
tation of the superclass already provides anything you will
need (for the desired application range).

3.2 Compositorical genericity

Compositorical genericity is the ability for performing
compositions on instances of functional units.

Known examples are mathematical composition of func-
tions, programming with combinatory logic or combina-
torical style in functional programming [SPVE93] (which
also shows that composition can be expressed by substi-
tution), Unix shells controlling "filter” processes intercon-
nected with pipes, or Unix nake which controls parallel in-
vocation of compilers and linkers for building an executable
by composition from many source files. Further exam-
ples illuminating the advantages of compositorical gener-
icity will be shown in section 4.

New functionality is created by composition of instances
of functional units to a network. It draws heavily from the
cartesian product which potentially leads to exponential ex-
plosion of possible combinations. The philosophy can be
characterized as nearly the opposite of extension of inter-
faces: in order to remain combinable with each other, in-
terfaces should remain compatible with each other. New
functionality is either created inside instances of functional
units without alteration of interfaces, or by composition to
new network configurations.

Compositorical genericity should be applied after apply-
ing universal genericity to interfaces, in order to reduce the
variety of interface types. In ideal case, only one or a low
number of universal interface types should be employed.
This way, maximum combinability will be ensured.

3.3 Extensional genericity

Extensional genericity is probably the most wide-spread
subtype of parametric genericity. Simple examples are use
of include files or other forms of inclusion by reference such
as www links to other contents inside of web frames. Ob-
ject oriented extension of interfaces (and often of imple-
mentations) by use of inheritance are more sophisticated
typical examples. Note that inclusion polymorphism (also
called subtype polymorphism) [CW85] is a subclass of ex-
tensional genericity restricted to transformations on types,
while parametric polymorphism is an analogous subclass
of the more general parametric genericity. Thus, paramet-
ric polymorphism should be regarded as the more general
concept (note that use of inclusion polymorphism has often
been motivated by its ability to runtime dispatch, but para-
metric polymorphism can also be implemented by runtime
substitution).

The philosophy of extensional genericity is to add new
functionality by extension of existing interfaces and imple-
mentations. In practice, this leads often to complex rela-
tions between classes and to a "balconize-whenever-seems-
necessary” mentality (in particular when requirements are
changing), such that redundancy is eventually increased
(e.g. incompatible extensions). However, in principle ex-
tensional genericity is able to reduce redundancy because
the parts which are included by reference have to be de-
noted only once. However, this property is not characteristic
of extensional genericity as such, but rather is characteristic
of any form of genericity (by definition; this is a justifica-
tion for the broadness of our definition). In our opinion,
these interrelations of concepts are often either confused or
not considered by many people, because the mechanisms
of extensional genericity are often easier to understand than
those of other forms of genericity.

Another motivation for extensional genericity has been
reuse. However, inclusion by reference means just to reuse
the referenced item in order to create a new one. This is
similar to creating a copy (we could call it logical copy)
and extending it. When iterated, this easily leads to code
bloat on sourcecode level, just the opposite of our goal. It
is important to recognize that reuse may also be achieved
with universal and compositorical genericity. While reuse
by inclusion will always produce some new item, univer-
sal and compositorical generity may just bear a potential of
forming new items, but it need not be carried out at once
(late composition or late application). Additionally, creat-

ing a new functional item for compositorical genericity will
multiply the potential of forming combined items instead of
actually creating exactly one logical copy.

In our opinion, the mentioned problems result from un-
reflected use of extensional genericity when other forms of
genericity would be more appropriate.

As a result from this discussion and by support of the
next section, we suggest to prefer both universal generic-
ity and compositorical genericity over extensional generic-
ity whenever possible. We will see that universal and com-
positorical genericity are sufficient for doing anything that
could be done with a computer. As a consequence, OO in-
heritance is not regarded as vital, but rather as an optional
concept.

4 Examplesfrom operating systems

We explain our subtypes of genericity by examples from
the operating systems area, where our original motivation
comes from. We have developed a novel architecture for
full-scale operating systems [ST02, ST03]. According to
figure 2, it may be characterized as a "pipes and filters style”
in the sense of software architecture [SG96].

The wires in figure 2 may be viewed as "transportation
channels” which logically transport instances of an abstrac-
tion we call "nest”. The nest abstraction is a universal ad-
dress space abstraction with an additional move-operation
to allow for reorganizations in the virtual address space
(space management; details may be found in [STO03]). Nests
are used to simulate not only files, but also whole filesystem
(sub)trees and process images, among others (such as pipes
and sockets). Thus, nests are striking examples of universal
genericity.

The boxes in figure 2 are called ”bricks” and may
be characterized as “transformers” between nest instances.
They are depicted with inputs on their left and outputs on
their right, similar to functional units in electrical engineer-
ing [Hot74] or automation control [IEC]. Wires are di-
rectionally drawn from left to right. By dynamic wiring,
we implement anonymous connection-oriented directional
communication (as opposed to OO, which employs connec-
tionless undirected communication, often on known part-
ners). Note that communication normally goes from right
to left, in the opposite direction of logical transportation.
Wired networks of brick instances are striking incarnations
of the principle of compositorical genericity.

Bricks may be implemented stateless. A stateless brick
instance may be de-instantiated at any time provided that
currently no activity is going on inside it, and later be re-
instantiated (with the same wire connections), such that
there is no observable difference in behaviour from the out-
side. As an example, the buf f er brick instance in figure
2 roughly resembles a "buffer cache” in conventional op-

buf f er

| devi ce_i de l— —| map_si npl e I—_
dir_sinple

...J

code .
| mu_i 386 I
uni on

data

stack "
renpte I—I mu_i 386 I

dir_sinple

|

—I renot e I—

dir_sinple

Figure 2. stripped-down OS scenario

erating systems by use of internal data structures such as
hash tables for keeping a transient mapping from logical
addresses to physical addresses (of the cached data blocks).
A stateless buf f er implementation will keep its internal
state in its lower input which is usually connected to de-
vi ce_randi sk, as well as the data blocks which are
maintained by the cache and passed by reference. If all state
information is always kept in an input instead of inside the
instance, the instance may be de-instantiated at any time
when there is no activity, and re-instantiated without a no-
ticeable effect on runtime behaviour. If statelessness is ap-
plied to any brick type, we get a network of instances which
delegate the responsibility for keeping state transitively to
their predecessors until some devi ce_* is reached, which
itself delegates it to the hardware (for performance reasons,
so-called pseudo-stateless buffers may be inserted to keep
some state for some limited time). Statelessness allows for
enormous simplification of reconfiguration, such as process
migration on a network of computers.

The property of statelessness is in fundamental contrast
to OO style of thinking, where both state and behaviour are
regarded as essential for objects. Bricks are rather similar to
components, which are also stateless according to Szyper-
skis definition in [Szy98], but components cannot be instan-
tiated (we may even instantiate bricks recursively).

Our "pipe and filter style” differs from known implemen-
tations of that style in the operating system area, such as
UIO [Che87] or stackable filesystems [HP94], in a nhum-
ber of ways. First, it has no ”consuming” semantics like
pipes, where processing of data would "destroy” old data
and produce a new version instead. Rather, a brick adds to
the ways we look at the system, by generating a new view
on the data: both the old view and the new view provided
by the transformation will exist in parallel; the "old” view
may for example be used by parallel wiring to other "con-
sumers” or "clients”. Second, it uses a universal (but never-
theless rather simple) abstraction called nest on all layers of
the whole operating system, not limited to filesystems. We
take advantage of the fact that bricks may be instantiated
dynamically at runtime, thus resembling the dynamic nature

of filesystem subtrees directly by recursive instantiation of
di r _*-bricks. We use a dynamic version of compositorical
genericity and draw from its ability to create new function-
ality by dynamic creation of new network configurations.

Now we look at an architectural feature which makes it
unique, even for an application software engineer: the way
how instances are generated.

command 1= =strategy_z |= =
---istrategy_xl--*
Ve alstrategy_y |= =
i mage
f— outl

COUE
control

tnp —y

iN] —

in2

The idea is to create and maintain brick instances of
any type by a special brick called cont r ol . However, a
cont r ol instance does not create other brick instances di-
rectly, it rather creates an i nage which may be thought
of a "process image” which "contains” the instances and
their wiring. In order to really “execute” the instance net-
work, some mu instance like mu_i 386 has to follow af-
ter (possibly indirectly), similar to the method as ”normal”
”processes” are brought to execution in figure 2. This al-
lows for opportunities to apply additional transformations
on the i mage, such as composition with other images.

Moreover, there are further opportunities for compos-
itorical genericity: the commands for instantiation and
de-instantiation are issued on “control lines” depicted as
dashed wires. Over these control wires, one can get infor-
mation on the instantiated network (such as the wiring graph
structure) as well. Thus a dashed control wire provides
a view on the system structure. There may exist multiple
views in parallel. For example, st rat egy_*-instances
may perform simple checks like disallowing cyclic wiring
to enforce hierarchical layering, or may transform between
views, or even create virtual views which do not exist in
"reality”.

What are the benefits of compositorical genericity on the
strategy_* level?

As an example, strategy_transparency may
provide network transparency, by automatically inserting
r enot e-instances into the system wherever it is neces-
sary to span several hosts on a computer network, and by
providing a single virtual system image. The automati-
cally inserted r enot e-instances may be hidden for users
of strat egy_transparency, so that they get the vir-
tual impression that no network would exist at all, and as if
everything would execute on a single "virtual computer”.

As another example, we may create hardware platform
transparency by inserting hardware-specific brick versions
at the right places. Multiple views may not only exist in
parallel, but may be combined with each other using com-
positorical genericity. When hardware transparency is com-
bined with network transparency, it should not make any
difference whether one buys a SPARC or an Intel computer
and connects it to the network.

Further examples for st r at egy_* are automatic load
balancing, fault tolerance, automatic insertion of adap-
t or _* for transparent mixing of different interface ver-
sions, or centralized enforcement of security policies using
check_* instances.

Now we demonstrate the theoretical power of universal
and compositorical genericity: we sketch the simulation of
basic concepts of functional programming (FP) [Fie88]:

EXPr (X) m— e == f fom -

| anbda apply

e £ ()

The idea is to create a brick appl y taking a function
f and an argument x, in order to logically produce a re-
sult f (x). With | ambda bricks, we can simulate A-
expressions by connecting its output x to free x-wire in-
puts (corresponding to occurrences of a free variable x)
of another subnetwork expr (x) , whaose output is in turn
connected to the input of | anbda (leading to a cycle).
By transforming complex A-expressions of the pure A-
calculus [Fie88] into equivalent networks of | anrbda and
appl y instances and by use of an appropriate st r at -
egy_| ambdar ewri t i ng which simulates graph reduc-
tion, we may simulate the very heart of functional program-
ming. Note that this will work on a purely syntactic level,
because the “contents” of the nest instances in the network
is never actually used, but rather the wiring structure itself is
"abused” for representation of an algebraic structure. Prob-
ably ”semantic” evaluation by message passing in a static
network is also possible.

We conclude from this simulation that universal and
compositorical genericity are sufficient to do anything that
can be done with a computer. This fact could be regarded
trivial because we could use universal interpreters inside
bricks; this means that in general universal genericity alone
would be sufficient. However, software engineering deals

with complexity of software structures in practice. Thus
compositorical genericity is added as a structuring princi-
ple in order to overcome the complexity problem of the
software structure itself. We do not claim that composi-
torical genericity is always more elegant than extensional
genericity in any application area, but we provide some evi-
dence that it could be more elegant in many more cases than
has been expected until now; further research is required to
check that.

As another demonstration for the power of compositori-
cal genericity, we simulate a key feature* of aspect-oriented
programming (AOP, [Kt97]; we assume the reader to be
familiar with it): strat egy_conbi ne modifies com-
mands for instantiation of bricks representing objects, say
hj ect _Aiin such a way that the following pair of brick
instances is always created in place of it:

I I
——t oj ect _A Aspect _B .
1 1

The dashed surrounding box shall indicate that from a
virtual viewpoint, the pair of instances is playing the same
role as was originally planned for Cbj ect _A alone. By
transparently pairing with Aspect _B (in general, we may
exploit subsets of the cartesian product of various Ob-
j ect _* with various Aspect _*), we can dynamically
create a combined functionality similar to AOP®. In con-
trast to most incarnations of AOP, the combination need
not be executed at compile time, although (dynamic) code-
generation for a combined Obj ect _A Aspect B-brick
in the style of macro or inline expansion and automatic
replacement by an appropriate strat egy_repl ace is
possible in our system (as well as for performance improve-
ment on arbitrary but static subnetworks).

Note that generalizations to bricks with multiple inputs
and outputs (e.g. for simulating state in aspects by stateless
bricks) or different types of inputs/ outputs (interface types)
are possible; we have just chosen to simplify our examples
by treating only the basic idea.

Our FP and AOP simulation examples indicate the
strength of the principles of universal and compositorical
genericity. Note that simulation of basic OO inheritance
is shown in [STO3], and we assume and expect that many
other concepts can be simulated rather easily with brick net-
works, such as subject-oriented programming [SOP]. Thus

4We are not sure whether all details of AOP implementations such as
described in [K+01] can be simulated with our approach (in particular,
simulation of advanced join point models may become hairy); we leave
this question for further research.

5We assume that only a fixed set of receptions-pointcuts exist which
have been made explicit in the object interface, and that before-, after-
and around-advice has been translated to ordinary procedures located in
Aspect _*. Calls-pointcuts may be simulated by swapping Obj ect _*
with Aspect _*. We just focus on the basic principles here.

we supply high plausibility for the superiority of universal
and compositorical genericity over extensional genericity
in many cases. If we had employed conventional OO de-
sign methods instead, our problems would have tried to be
solved very likely with extensional genericity, which would
have led to much more complicated and/or less dynamic so-
lutions.

5 Conclusions

We have presented means for reducing redundancy in
software structures, motivated by strong economical argu-
ments. We have also provided a rough taxonomy on that
means which is open for future enhancement and improve-
ment. We have suggested to change current nomenclature
such that genericity is no longer a (near-)synonym for (vari-
ants of) polymorphism, but rather broadened over any part
of a software system, whether static or dynamic, while poly-
morphism remains restricted to the area of type concepts.

We have argued and provided some evidence based on
design examples and on general theoretical arguments, that
universal genericity and compositorical genericity as de-
fined by us should be prefered over extensional genericity
when possible. This is in contrast to OO style of think-
ing. Although OO based methods such as generative pro-
gramming [CE00] have recently focussed on a similar goal
to reduce redundancy and have employed many variants of
(object) composition, we go one step further by (1) empha-
sizing the importance of universal genericity, (2) concep-
tually subordinating extensional genericity (which could be
regarded as the heart of OO), and (3) employing stateless-
ness. In effect, we take OO no longer as vital basis. In our
example design from the operating system area, we have
avoided inheritance nearly completely, but rather used uni-
versal and compositorical genericity in preference.

We have presented general principles, but examples only
from a special application domain. In order to become a ma-
ture discipline in software engineering, much more work is
needed on universal and compositorical genericity, its ap-
plications, on appropriate infrastructures, and in particular
on design methods leading to them.

References

[CEO0] CzARNECKI, KRzYszTOF and ULRICH W. EISE-
NECKER: Generative Programming. Addison Wesley,

2000.

[Che87] CHERITON, DAvID R.: UIO: A Uniform 1/O System
Interface for Distributed Systems. Transactions on
Computer Systems, 5(1):12-46, 1987.

[CW85] CARDELLI, Luca and PETER WEGNER: On Under-

standing Types, Data Abstraction, and Polymorphism.
Computing Surveys, 17(4):471-522, 1985.

[DDH72] DAHL, O.-J., E. W. DIuksTRAand C. A. R. HOARE:
Structured Programming. Academic Press, 1972.

[Fie88] FIELD, ANTHONY J.: Functional Programming.
Addison-Wesley, 1988.

[Hot74] HoTz, GUNTER: Schaltkreistheorie. De Gruyter,
1974.

[HP94] HEIDEMANN, JOHN S. and GERALD J. POPEK: File-

System Development with Stackable Layers. Transac-
tions on Computer Systems, 12(1):58-89, 1994.
[IEC] IEC Standard 61131-3. htt p: / / www. hol obl oc.
com stds/iec/sc65bwg7tf 3/ htm /news.
ht m
KiczALES, GREGOR and OTHERS: Aspect-Oriented
Programming. In European Conference on Object-
Oriented Programming (ECOOP), LNCS 1241.
Springer-Verlag, 1997. ht t p: / / ww2. par c. com
csl / groups/ sda/ publ i cati ons/ papers/
Ki czal es- ECOOP9%// f or - web. pdf .
KiczALES, GREGOR and OTHERS: An Overview
of Aspect]. In European Conference on Object-
Oriented Programming (ECOOP), LNCS 1241.
Springer-Verlag, 2001. http://aspectj.
or g/ docunent at i on/ paper sAndSl i des/
ECOOP2001- Over vi ew. pdf %
[Mey88] MEYER, BERTRAND: Object-Oriented Software Con-
struction. Prentice Hall, 1988.

NAVRAT, PAvoL: A Closer Look at Programming Ex-
pertise: Critical Survey of Some Methodological Is-
sues. In Information and Software Technology, num-
ber 38. Elsevier, 1996.

RiTcHIE, DENNIS M. and KEN THOMPSON: The
UNIX Time-Sharing System. CACM, 17(7):365-375,
1974,

SHAW, MARY and DAVID GARLAN: Software Archi-
tecture, Perspectives on an Emerging Discipline. Pren-
tice Hall, 1996.

[SOP] Homepage of the Subject-Oriented Programming
Project. http://ww.research.ibm com
sop/ .
[SPVE93] SLEEP, M. R., M. J. PLASMEIJER and M. C. J. D.
VAN EEKELEN (editors): Term Graph Rewriting: The-
ory and Practice. Wiley, 1993.
SCHOBEL-THEUER, THOMAS: Skizze einer auf
nur zwei Abstraktionen beruhenden Betriebssystem-
Architektur: Nester und Bausteine. Arbeitspapier und
Vortrag auf dem Herbsttreffen der GI, Fachgruppe Be-
triebssysteme, Berlin, 7. — 8.11.2002.
SCHOBEL-THEUER, THOMAS: Eine neue Architektur
fur Betriebssysteme. Unveréffentlichtes Manuskript,
2003. Erhaltlich auf Anfrage bei schoebel @
informati k. uni -stuttgart. de.
SzYPERSKI, CLEMENS: Component Software.
Addison-Wesley, 1998.
THOMPSON, SIMON: Haskell: The Craft of Func-
tional Programming. Addison-Wesley, 1996.

[K+97]

[K*T01]

[N&v96]

[RT74]

[SG96]

[ST02]

[STO3]

[Szy98]

[Tho96]

