A LEGO-like Lightweight Software Component
Architecture for Organic Computing

Thomas Schébel-Theuer, University of Stuttgart

Abstract: The goals of organic computing are difficult to achieve due to the hetero-
genity of current software components. We believe that in the long term more ad-
vanced software architectures are required, in particular "LEGO®-like” systems with a
small number of interface types and maximum combinability of component instances.
High combinability is the key for automated reasoning on and controlling of organi-
zational structures of organic systems (e.g. self-describing systems), and automated
reasoning is in turn the key for achieving organic properties such as self-configuration,
self-optimizing, self-healing, and so on.

1 Introduction

Self-configuration is one of the main goals of organic computing, among others. First
we will make clear that self-configuration is a special case of plain automatic configu-
ration. When a system A is to be configured automatically, some identifiable system B
must be responsible for that. Otherwise we have no means to deal with the configuration
task in a formalized way. When B is a subsystem of A, we speak of self-configuration.
Otherwise, we have a more general configuration system B for system A. In this view,
self-configuration is nothing more than making sure that B is some subset or subpart of A.

Thus we split the problem into two parts: (1) build a system B which can (re)configure
system A, and (2) ensure that B is a (not necessarily true) subsystem of A. Then A can
(re)configure "itself”, on behalf of its subsystem B.

In this position paper, we will first discuss property (1) with respect to the needs of organic
computing. We will develop recursive means for handling configuration. Property (2) then
becomes a special configuration of a solution for property (1).

Automation of configuration tasks means dealing with compositional structures and prop-
erties of components. A major issue of current component architectures is composability.
Current OO design methods often lead to system designs with dozens or even hundreds of
class interfaces, and in turn of component interface types. In our opinion, a large number
of interface types is counter-productive for composability.

We believe that the success of the LEGO toys [LEG] can teach us another lesson: uniform
interfaces (or at least a small number of at least partly compatible interfaces) are not just
a nice feature of a component architecture, but fundamental for composability. In other

1Brand names like LEGO and Fischertechnik are the property of their respective owners.

— dir_sinple dir_sinple

Hevi ce_r andi sk —|_ -

Figure 1: Filesystem example

words, uniformity of interfaces is a must for achieving high composability. In the area
of mechanics, this is intuitively clear, and the LEGO system is demonstrating the truth of
it. Although there exist hundreds of types of LEGO bricks and very complex items like
dolls, there is basically only one interface type having the shape of a tenon. Although
the corresponding tapholes may have different shapes, their functionality of connecting
to the same type of tenon is always the same. At a few very special places, other types
of interfaces are also used, but a close look at them reveals that they are at least partly
compatible with the standard interface.

One might argue against the LEGO system that functionality could be reduced by uni-
formity of interfaces. Other toy brick systems like Fischertechnik [ft] can create higher
functionality, but they also use a very low number of basic interface types. So this means
that the interfaces have to be carefully designed to be universal, at least "universal enough”
for achieving the goals of the system. Fischertechnik addresses a different application area
from LEGO.

We believe that the problem of functionality can be overcome in many places by the con-
cept of universal genericity of interfaces [ST03b]. The LEGO system is a good example
for compositorical genericity [STO3b] based on a universally generic interface. Whenever
the overall functionality is achieved by composition of standard bricks, the interface can
be lean and simple, as long as it is universally generic.

In many presentations on component software, the puzze has been used as a metaphor.
However, the puzzle is nearly the opposite of a LEGO system: any two pieces which don’t
belong together will not fit, i.e. have non-compatible shapes (at least in many cases). The
pieces of a puzzle can be put together only in one single way (although in many differ-
ent orders), forming one single end result - and thus the system is not compositorically
generic. Splitting a software system into components according to the puzzle metaphor is
not suitable for organic computing - it is just too inflexible to allow for (self-)configuration,
and does not support context awareness and anticipatory behaviour on the structural level.

2 An Example LEGO-like Architecture

In [ST02, STO3a, STO3b], we have proposed a LEGO-like lightweight component archi-
tecture for (distributed) operating systems. It could be characterized as a "pipes and filters
style” in the sense of software architecture [SG96]. Due to its universal genericity, it

should be also suitable for database systems [ST03c], and perhaps other application areas.
We are currently working on an operating system prototype called ATHOMUX. The basic
infrastructure and the filesystem part are already working. Preliminary performance mea-
surements on its basic operations show results in the same order as roughly comparable
basic Linux services, or even better.

The wires in the example (figure 1) may be viewed as "transportation channels” which
logically transport instances of a memory abstraction called "nest”. The boxes are called
"bricks” and may be characterized as "transformers” between nest instances. Brick in-

stances are depicted with inputs on their left and outputs on their right, similar to functional
units in electrical engineering or automation control [IEC]. Wires are directionally drawn
from left to right. By dynamic wiring, we implement anonymous connection-oriented di-
rectional communication (as opposed to OO, which employs connectionless undirected
communication, often on known partners). Communication normally goes from right to
left, in the opposite direction of logical transportation.

Our "pipe and filter style” differs from known implementations of that style in the oper-
ating system area, such as UIO [Ch87] or stackable filesystems [HP94], in a number of
respects. First, it has no "consuming” semantics like pipes, where processing of data would
"destroy” the old data and produce a new version instead. Rather, a brick adds to the ways
we may look at the system, by providing a non-desctructive new view on the data: both the
old view and the new view provided by the transformation will exist in parallel; the "old”
view may for example be used by parallel wiring to other "consumers” or "clients”. Mod-
ifications carried out in one view will usually be immediately reflected in the other view;
a transformation may thus be characterized as logically acting bidirectionally. Second, we
use nests as a universal (but nevertheless rather simple) memory abstraction on all layers
of the whole operating system, not limited to filesystems (in contrast, stackable filesys-
tems are based on conventional filesystem abstractions such as i nodes, vf s, directory
(sub)trees, etc). We take advantage of the fact that bricks may be instantiated dynamically
at runtime, resembling the dynamic nature of filesystem subtrees directly by recursive in-
stantiation of di r _* -bricks. Third, generation and maintainance of instances is done by
a recursive and self-describing methodology as sketched:

comrand p==strategy_z = =
COUE mmm— - - - strategy_x--i
control .
TN — . = =|sStrategy_y f= =
i mage
1 N2 e p— QUL 2 mru_i 386
o R LI o
[] [J
[] [J

Brick instances of any type are created and maintained by a special brick type called
cont r ol . Inthe above picture,acont r ol instance does not create other brick instances

directly, but rather creates an i mage which may be considered a kind of "process image”
"containing” the instances and their wiring. In order to really "execute” the instances

network, some mu instance like mu_i 386 has to follow it (possibly indirectly). In our
ATHOMUX prototype, we implemented a cont r ol _durmy_I| i nux without i mage
output, running in an ordinary Linux process, but separating both levels logically. Our
brick sourcecode is designed to run in other cont r ol _* environments without alteration.

The command output of cont r ol _* is a nest instance containing some abstract rep-
resentation of the instances network, satisfying property (1). In our ATHOMUX proto-
type, we chose ASCII strings describing instances, inputs and outputs, and their wiring
in a C-like syntax. This simplifies manipulations and transformations of virtual brick
networks by searching and replacing via regular expressions. By "writing” such represen-
tation strings into the command channel depicted with dashed lines, (de)instantiation of
bricks, dynamic inputs/outputs, and wires are performed. In general, an abstract represen-
tation of a (virtual) network of (virtual) instances can be both queried and manipulated via
the dashed control wires, providing a controllable description on the system structure and
the interrelations between instances. There may exist multiple descriptions in parallel. In
the picture, different st r at egy_* -instances are non-destructively transforming between
descriptions or creating virtual descriptions which need not to exist in "reality”.

The wiring of strat egy_*-instances may itself be controlled by another cont r ol
instance connected with st rat egy_strat egy_*-instances. This may be continued
recursively, forming a hierarchy of control levels. Ata certain level the hierarchy can either
terminate by a level which controls itself, or at a level where never any modifications are
necessary (e.g. a conventional bootstrap mechanism). In order to form an organic system
with self-control, we simply select the first alternative to obtain property (2). When a
conmand output contains its own controlling and strategy bricks, we get self-description
in the sense of organic computing. Other properties of organic systems can be achieved by
usage of appropriate st r at egy_* bricks in such a self-describing configuration.

As an example for st r at egy_* brick types, a specific strat egy_transpar ency
may provide network transparency, by automatically inserting r enot e instances into the
system wherever it is necessary to span several hosts on a computer network, and by pro-
viding a single virtual system image. The automatically inserted r enrot e-instances may
be hidden for users of st r at egy_t r anspar ency, so that they get the virtual impres-
sion that no network would exist at all, and as if everything would execute on a single
"virtual computer”. Further examples are st r at egy_* brick types for providing differ-

ent operating system personalities, code morphing [cod] for creating hardware platform
transparency, for automatic adaptation to varying workloads (load balancing) or to unpre-
dictable faults (fault tolerance), for achieving recoverability (transactions), for centralized
enforcement of security policies by automatically inserting check_* instances at strate-
gic places, emulation of AOP [K*97] as pointed out in [ST03b], and much more.

In particular, the desired behaviour of organic systems such as context-awareness can be
implemented by appropriate strat egy_* bricks. A LEGO-like system allows easy
composition of strategies for organic behaviour. In extension to coordination models
[CHO96], transformations at the strategy level can be carried out non-destructively by re-
cursive and self-describing abstract representations of the system.

In summary, creating multiple descriptions based on separation between instances and
their relations enables advanced functionality such as organic behaviour in a modular way.

3 Conclusions

We have argued that it is advantagous to build organic systems on LEGO-like lightweight
component systems, which should be able to describe themselves recursively. Recursive
self-description is a key to automated reasoning on the system at the structural level, and
it is crucial for achieving organic properties such as self-configuration, self-healing, and
many others. Our ATHOMUX prototype demonstrates that LEGO-like systems are fea-
sible and may have a high potential for becoming a high-performant fundamental infras-
tructure for organic systems.

References

[Ch87] Cheriton, D. R.: Uio: A uniform i/o system interface for distributed systems. Transactions
on Computer Systems. 5(1):12-46. 1987.

[CH96] Ciancarini, P. und Hankin, C. (Hrsg.): Coordination Languagesand Models. LNCS 1061.
Springer Verlag. 1996.

[cod] Code morphing. http://ww. transneta. conitechnol ogy/
ar chi tect ur e/ code_nor phing. html .
[ft] http://ww. fi schertechni k. com

[HP94] Heidemann, J. S. und Popek, G. J.: File-system development with stackable layers. Trans-
actions on Computer Systems. 12(1):58-89. 1994,

[IEC] lecstandard 61131-3. htt p: // www. hol obl oc. coni st ds/ i ec/ sc65bwg7t f 3/
ht M / news. ht m

[K*97] Kiczales, G. u. a. Aspect-oriented programming. In: European Con-
ference on Object-Oriented Programming (ECOOP). LNCS 1241. Springer-
Verlag. 1997. http://ww2. parc. coni csl / groups/ sda/ publi cati ons/
paper s/ Ki czal es- ECOOP9%// f or - web. pdf.

[LEG] http://www. | ego. com

[SG96] Shaw, M. und Garlan, D.: Software Architecture, Perspectiveson an Emerging Discipline.
Prentice Hall. 1996.

[ST02] Schobel-Theuer, T. Skizze einer auf nur zwei abstraktionen beruhenden betriebssystem-
architektur: Nester und bausteine. Arbeitspapier und Vortrag auf dem Herbsttreffen der
GI, Fachgruppe Betriebssysteme, Berlin. 7. —8.11.2002.

[ST03a] Schobel-Theuer, T. Eine neue architektur fur betriebssysteme. Unverdffentlichtes
Manuskript einer Monographie. 2003. Erhaltlich auf Anfrage bei schoebel @
informati k. uni-stuttgart. de.

[STO3b] Schébel-Theuer, T.: On variants of genericity. In: Proceedings of the Fifteenth Interna-
tional Conference on Software Engineering & Knowledge Engineering (SEKE 2003). S.
359-365. Knowlegde Systems Institute. 2003.

[ST03c] Schébel-Theuer, T.: A way for seamless integration of databases and operating systems.
In: Proceedingsof the Inter national Conferenceon Computer Science and its Applications
(ICCSA-2003). S. 82-89. National University. 2003.

