
A WAY FOR SEAMLESS INTEGRATION OF DATABASES AND

OPERATING SYSTEMS

Thomas Schöbel-Theuer, University of Stuttgart
Universitätsstr. 38, D-70569 Stuttgart

schoebel@informatik.uni-stuttgart.de

ABSTRACT: We present a novel common archi-
tecture for both operating systems and databases.
Seamless integration will blur differences from
user’s viewpoints and allow for easier merging of
filesystem data and database data, as well as for
uniform treatment of either sort of data with both
OS and DB access methods. This will simplify man-
agement and retrieval of data, reduce training costs,
open data treasures for better exploitation, and sim-
plify integration of applications which rely on dif-
ferent system interfaces. Seamless integration can
achieve both representation transparency and inter-
face diversity in a uniform way, less complicated and
more capable than glueing together conventional
DBs and OSs.
Keywords: operating systems, databases, software
architecture, statelessness, synergy effects, represen-
tation transparency, interface diversity.

1. INTRODUCTION
Operating systems (OSs) and database systems
(DBs) have developed rather independently in his-
tory. Traditionally, DB designers have either started
to ”write a new, simpler and ’vastly superior’ op-
erating system”, or they have ”extend[ed] the ba-
sic operating system to have the desired function”
[11]. Most DBs have taken the first choice (basi-
cally using only device drivers from the OS and act-
ing as normal user processes); only a few like IMS
have taken the second choice, basically delivering a
functionality which is not in direct competition with
most OS services. DB designers have expressed their
needs a few times and criticized inadequate OS sup-
port [21, 25, 22], which led to OS completions for
some of their most critical desires, but mainstream
OSs like UNIX are still separate from DB systems.
Today, OSs and DBs are regarded as two different
subfields of computer science with little interactions.

We propose a third way: seamless integration of OSs
and DBs by use of a novel common architecture for
both fields. This is fundamentally different from at-
tempts to ”glue together” both worlds.
The basic idea is to use a universal abstraction called
”nest” on all levels of the system, which may not
only emulate classical OS abstractions such as files,
whole filesystem subtrees, process images and oth-
ers, but may also emulate relational DB tables. Nest
instances are transformed into other nest instances
by functional units called ”bricks”. In contrast to
object oriented (OO) style, bricks may be imple-
mented stateless, leading to enormous simplification
of dynamic reconfigurations such as data migration
or process migration in a network of computers.
A key feature of our architecture is the ability to
handle multiple views on the system. As an exam-
ple, there may be location transparent views which
abstract away from concrete instance locations in
a computer network, views hiding technical details
such as connector objects, views providing different
programming interfaces, or virtual views creating a
totally different higher-level picture of the system.
Although we have originallydeveloped views for our
OS design, they naturally correspond to DB views.
Using a common architecture for both DBs and
OSs allows for both representation transparency
and interface diversity, in a less complex way as
with known methods like wrapping [17] or glue-
ing together conventional DB and OS implemen-
tations [3]. Our architecture allows orthogonal
combinations with location transparency, hardware
transparency, fault tolerance and other forms of
(re)configuration automation, leading to increased
functionality, simplicity, stability, security, and de-
creased overhead.
The paper is organized as follows: section 2 intro-
duces basic concepts by examples from our operat-

1

mmu_i386
dir_simple

mmu_i386

device_ramdisk

data

stack

mmap

code

dir_simple union
map_simplebufferdevice_ide

remote

device_ramdisk

remote dir_simple

Figure 1: stripped-down OS scenario

ing system design. Section 3 sketches emulation of
basic database functionality. Section 4 discusses the
criticism from Stonebraker [21]. Section 5 shows
how databases and operating systems could be seam-
lessly integrated, and section 6 concludes the paper.

2. A DESIGN FOR OPERATING SYSTEMS
Our original motivation comes from OSs, for which
we have developed a novel architecture [19, 18]. Ac-
cording to the example scenario in figure 1, it may
be characterized as a ”pipes and filters style” in the
sense of software architecture [20].
The wires in figure 1 may be viewed as ”transporta-
tion channels” which logically transport instances of
a universal address space abstraction called ”nest”.
The boxes are called ”bricks” and may be char-
acterized as ”transformers” between nest instances.
They are depicted with inputs on their left and out-
puts on their right, similar to functional units in
electrical engineering [14] or automation control
[15]. Wires are directionally drawn from left to
right. By dynamic wiring, we implement anonymous
connection-oriented directional communication (as
opposed to OO, which employs connectionless undi-
rected communication, often on known partners).
Communication normally goes from right to left, in
the opposite direction of logical transportation.
Our ”pipe and filter style” differs from known im-
plementations of that style in the OS area, such as
UIO [5] or stackable filesystems [13], in a number
of ways. First, it has no ”consuming” semantics like
pipes, where processing of data would ”destroy” the
old data and produce a new version instead. Rather,
a brick adds to the ways we may look at the sys-
tem, by providing a new view on the data: both the
old view and the new view provided by the transfor-

mation will exist in parallel; the ”old” view may for
example be used by parallel wiring to other ”con-
sumers” or ”clients”. Second, the nest is a univer-
sal (but nevertheless rather simple) abstraction for
all layers of the whole OS, not limited to filesystems
(in contrast, stackable filesystems are based on con-
ventional filesystem abstractions such as inodes,
vfs, directory (sub)trees, etc). We take advantage
of the fact that bricks may be instantiated dynami-
cally at runtime, thus resembling the dynamic nature
of filesystem subtrees directly by recursive instanti-
ation of dir_*-bricks.
Nest instances are used for modeling logical address
spaces (similar to virtual address spaces, but inde-
pendent from MMU hardware). A nest instance rep-
resents a sparse address space with arbitrary holes,
managing data blocks in multiples of an arbitrary
transfer_size value. Here is an overview on
the elementary operations of the nest interface:

get_address

lock

get

transfer

wait

put

unlock

put_address

logical IO

pipes
sockets
& co

IO operations
physical

optional locking

2

The elementary operations are organized as a lay-
ered system, where each layer consists of two op-
erations which should be used pairwise. On the in-
nermost layer, transfer and wait can be used to
perform both synchronous and asynchronous IO on
known physical addresses of raw data blocks; thus
it is called physical IO. The next layer comprises
operations get and put and is called logical IO,
which translates from logical addresses to physical
addresses similar to conventional buffer caches. On
the next layer, read-locks and write-locks are im-
plemented to solve the problem of mutual exclusion
which occurs when multiple inputs are connected to
a single output (parallel wiring). The outermost layer
solves the problem of atomar reservation in the log-
ical address space; it is used for parallel operations
on pipes and sockets. Details may be found in [18].

������
���
������
���
���������������������������
���������������������

���������������������������
���������������������

���������������������
���������������������

	�		�	
�

�
 ��������������
��������������
�
�
�

�
�
�

��
������
������

������
������
������
������

0 2^64

0 2^64

In extension to known address space abstractions,
the nest interface has an additional operation move.
It is used for transparent moving of data blocks in the
logical address space. Moves are not implemented
by heavy copying of data, but rather by modifying
the internal association from logical to physical ad-
dresses. When implemented in a smart way, the per-
formance of move operations is expected to be quite
satisfying. Move operations are particularly useful
for reorganizations in logical address spaces, e.g.
when keeping whole filesystem images or filesystem
subtrees within a nest instance. Files and filesystem
subtrees may be kept contiguously (or nearly con-
tiguous) in the logical address space. When space re-
quirements are changing, we may simply create new
space or delete unused space by means of move op-
erations.

selectorinput output

As an example for transparent move operations,
look at a selector brick, which selects a part of
the input space and makes it available at the out-
put, but with logical addresses restarting from logi-
cal address 0:

������������ ���������
���������
�������������� ��������������

��������������

������
���
������
���

������
���
������
���

 � � � � � � !�!�!�!!�!�!�! "�"�""�"�"
#�##�# $�$�$�$�$$�$�$�$�$$�$�$�$�$%�%�%�%�%%�%�%�%�%%�%�%�%�%

&�&�&&�&�&'�''�'(�(�(�((�(�(�()�)�)�))�)�)�)

��**�*�*+�++�+ ,�,�,�,�,
,�,�,�,�,
-�-�-�--�-�-�- .�.�.�.�..�.�.�.�.

/�/�/�/�//�/�/�/�/

0�0�0�0�00�0�0�0�00�0�0�0�0
1�1�1�1�11�1�1�1�11�1�1�1�1

0 2^64

0 2^64

(spanning the selected sub−nest)

selection

input

output

0

0

result of move (original nest)

selection

(no change)

2^64

2^64

move operation on the original instance

When a move operation spans at least the whole
selected part, the output is not shifted in the same
way as the input, but rather the ”anchor” of the se-
lected part is moved according to the shift distance,
such that the logical ”contents” of the output re-
mains unchanged (invariant or transparent move).
Transparent moves are particularly useful for emu-
lating filesystem semantics in the presence of open
files. Some details of the internal workings of
dir_simple-bricks may be found in [18].
A very short overview on some basic brick types
for OSs as proposed in [18]: device_* resem-
bles device drivers, buffer corresponds to buffer
caches, map_* implements sparsity and the move
operation and solves fragmentation (locality of ac-
cess), dir_* resembles flat filesystem directories,
union ”concatenates” or ”mounts together” multi-
ple nest instances to a single one, mmu_* acts as de-
vice driver for the MMU hardware to execute a ”pro-
cess image”, adaptor_* translates between dif-
ferent transfer_size values or access models,
cow implements the copy-on-write strategy, re-
mote uses the client-server-paradigm to export a
nest instance to a remote site in a computer network,
and mirror implements distributed shared memory
and/or replication of a nest instance. Further brick
types like pipe or socket may be added. With
transaction, we may introduce ACID semantics
[12] for any part of an OS.
Bricks may be implemented stateless. A brick is
called stateless, if it may be de-instantiated at any
time provided that currently no activity is going on
inside it, and later be re-instantiated (with the same
wire connections), such that there is no observable
difference in behaviour from the outside. As an ex-
ample, look at a buffer brick, which solves the
problem of access gaps in memory hierarchies:

buffer

fast

slow

3

Caches use internal data structures such as hash ta-
bles for keeping a transient mapping from logical
addresses to physical addresses (of the cached data
blocks). A stateless buffer implementation will
keep its internal state in the fast-input, as well as
the data blocks which are to be maintained by the
cache. If all state information is always kept in the
fast-input instead of inside the instance, the buffer
may be de-instantiated at any time when there is no
activity, and re-instantiated without even a notice-
able effect on runtime caching behaviour. If state-
lessness is applied to any brick type, we get a net-
work of instances which delegate the responsibility
for state keeping transitively to their predecessors
until some device_* is reached, which itself del-
egates it to the hardware (for performance reasons,
so-called pseudo-stateless buffers may be inserted to
keep some state for some limited time). Stateless-
ness allows for enormous simplification of reconfig-
uration, such as process migration on a network of
computers.
The property of statelessness forms a major dif-
ference to OO style of thinking, where both state
and behaviour are regarded as essential for objects.
Bricks are rather similar to components, which are
also stateless according to Szyperskis definition in
[24], but components cannot be instantiated like our
bricks (we may even instantiate them recursively).
Now we look at the way how instances are generated.

control

out1

out2in2

in1

tmp

code

image

command

mmu_i386

strategy_z

strategy_y

strategy_x

The idea is to create and maintain brick instances
of any type by a special brick called control.
However, a control instance does not create other
brick instances directly, it rather creates an image
which may be thought of a ”process image” which
”contains” the instances and their wiring. In or-
der to really ”execute” the instances network, some
mmu instance like mmu_i386 has to follow after
(possibly indirectly), similar to the method ”nor-
mal” ”processes” are brought to execution in figure
1. This leads to a separation between the control-
ling instance which controls the wiring (relations be-

tween instances) and the actual environment where
the instances are executed; instances are disallowed
from modifying their relations directly (for example,
cyclic wiring may be disallowed [8]).
Moreover, this leads to another separation: the com-
mands for instantiation and de-instantiation are is-
sued on ”control lines” which are depicted as dashed
wires. Over these control wires, one can get informa-
tion on the instantiated network (such as the wiring
graph structure) as well. This means, a dashed con-
trol wire provides a view on the system structure
and the interrelations between instances. There may
exist multiple views in parallel. In the example,
there exist different strategy_*-instances which
may transform between views, or even create vir-
tual views which do not exist in ”reality”. Moreover,
the wiring of strategy_*-instances may itself be
controlled by strategy_strategy_*-instances
and so on, but at some arbitrary level these control
levels should either terminate by a level which con-
trols itself, or at a level where never any modifica-
tions are neccessary (note that such a level is orig-
inally instantiated by a bootstrap mechanism which
is neccessarily outside the system; see [18]).
What are the benefits of separation of control over
instances?
As an example, strategy_transparencymay
provide location transparency, by automatically in-
serting remote-instances into the system wher-
ever several hosts must be spanned on a com-
puter network, and by providing a single virtual
system image. The automatically inserted re-
mote-instances may be hidden for users of strat-
egy_transparency, so that they get the virtual
impression that no network would exist at all, and
as if everything would execute on a single ”virtual
computer”.
As another example, we could provide different OS
personalities, such as different sets of system inter-
faces (by relaxing the use of single nest interface
type at certain well-chosen points), to allow for het-
erogeneous mixing of applications which have been
written for different OS platforms. These views may
not only exist in parallel, but may be combined with
each other, e.g. with network transparency.
As another example, we may employ code transla-
tion similar to code morphing [1] to create hard-
ware platform transparency. On the instance level,

4

executable code for the Intel 80x86 processor may
be converted by morph_i386_sparc to code
for the SPARC processor. Such code morphing
bricks may be inserted automatically by a strat-
egy_morph-level, whenever applications are exe-
cuted on SPARC machines instead of Intel machines,
or vice versa (e.g. when process migration crosses
hardware architecture borders). In general, hardware
platform independency requires not only hardware-
specific instances such as mmu_sparc in place of
mmu_i386, but may require further conversions of
data contents such as byte order conversions (for
suggestions on generic type systems describing data
formats, see [18]). On the ”virtual computer” level,
we may provide a view in which hardware specific
details are completely hidden. When combined with
network transparency, it should not make any differ-
ence whether one buys a SPARC or an Intel com-
puter and connects it to the network.
Note that that often different views are needed in par-
allel. For example, a service technician may need
hardware-dependent views for locating a faulty de-
vice, and a network supervisor may be interested in
views of the physical network configuration.
Further examples for strategy_* are automatic
adaptation to varying workloads (load balancing), or
to unpredictable faults (fault tolerance), or to special-
ized needs such as multimedia support or transac-
tion support, or automatic insertion of adaptor_*
where necessary, or centralized enforcement of se-
curity policies by inserting check_* instances, just
to mention a few possibilities.
Finally, we look at another example where a key
property of OO is relaxed: the notion of identity is
softened. In a wired network based on stateless brick
instances, state is not represented by brick instances,
but rather kept in nest instances. Even that is not the
full truth: there may exist nest instances which are
equivalent to each other (i.e. they form aliases in
logical sense), although they are not identical. As an
example, look at the following picture:

remote

remote

something

something

Because of the properties of statelessness, this is
functionally equivalent to the following network:

something

remote

remote

Which of these configuration variants will deliver
better performance in practice? There is no gen-
eral answer. It may depend on subtle properties of
network bottlenecks, on required throughput before
and after the something-instance(s) (which may
be different), on the CPU load the work in some-
thing may produce in total, and on the synchro-
nization overhead between two paralleled some-
thing-instances, among many other influences. In
one case the first variant may be better, in another
case the second. So what to do?
We may create strategy_*-bricks transforming
one configuration variant into another, depending on
knowledge on the problem domain, on environmen-
tal properties, and on actual measurement data (e.g.
for current load). Such transformations may for ex-
ample be governed by rule-based methods, on an au-
tomatic basis.

3. EXTENSION TO DATABASES
The basic idea for implementing DB functionality
with wired brick networks is simply to keep sets
of objects, e.g. relational DB tables, in nest in-
stances. A table of fixed-length records may be di-
rectly emulated using a transfer_size equaling
to the record length. Since variable-length records
or record fields such as BLOBS (binary large ob-
jects [9]) naturally correspond to files in OSs, we
may use the concepts from the previous section for
them (but take care for excellent performance even
for extremely small objects; for some suggestions
see [18]).

gen_table

schema

tmp

table

gen_index

table

tmp

indexed_table

Tables may be generated from external schema
specifications with gen_table, keeping necessary
state in its tmp input. A relational table will nor-
mally occupy a contiguous area in the logical ad-
dress space of a nest instance. Insertions and dele-
tions may be directly carried out using move opera-
tions; the implementation should ensure data consis-
tency by allowing only correct operations which are

5

compatible with the schema definition. Adding mul-
tiple indexes is possible with gen_index, which
adds a (virtual) table of record numbers (at a sepa-
rate contiguous area in logical address space), which
is sorted by an external sorting criterion. The pri-
mary index can be omitted if we keep the table al-
ways sorted according to the primary index; the pres-
ence of the move operation allows for different so-
lutions from conventional designs (note that we are
just discussing the presentation at the interface level;
the internal realisation may employ totally different
methods such as B-trees or hashing).
Basic DB operations may be implemented as bricks
emulating relational algebra operations, such as se-
lect, join, and projection. By dynamic
wiring to complex brick networks, any expression
from relational calculus may be emulated.

orig

tmp

view3

view1

view2

transaction

Transaction support may be added by transac-
tion_* bricks. A transaction is nothing other than
an isolated view on an original nest instance which
is independent from other views and obeys the ACID
properties [12, 7]. An alternative way of introducing
transaction semantics into the nest interface may be
found in [18]; a description would exceed the space
limits for this paper.
Translation of SQL statements to brick networks is
possible with strategy_sql or similar bricks on
the strategy_* level. Query optimization may
be done either directly in strategy_sql, or in
subordinated bricks like strategy_optimize.
The latter should be preferred when remote or
mirror instances are to be inserted for emulation
of distributed DBs; by dynamic choice of insertion
points for remote, distributed query optimization
and load balancing may be performed. Even dy-
namic insertion of additionalbuffer instances may
be worthwile in some cases:

join

AxBxC

select

reduced
buffer

A

B

C
buffer

Here we look at a pathological example of a SQL

statement which produces a join of three tables A,
B and C, and applies a selection predicate which
depends non-uniformly on the product records as a
whole, not on their components (otherwise query op-
timization could first execute select before apply-
ing join). When the sum of tables A, B and C fits in
the lower buffer instance, we get no heavy perfor-
mance problem when join traverses them repeat-
edly. However, when select throws out most of
the product records, only a small number of records
will survive at the reduced output. When the re-
sult is read many times by many consumers, the huge
join product would be repeated each time, leading
to high CPU load. By appending a second buffer
instance at the end of the chain, repeated evaluation
of the product can be avoided in many cases, lead-
ing to a drastic reduction in overall CPU consump-
tion. The example shows that recursive instantiation
of bricks is a very powerful concept.

4. FUNCTIONALITY AND PERFORMANCE
Stonebraker has criticized contemporary UNIX sup-
port for DBs in 1981 [21] and argued for separation
of DB implementations from OS implementations.
In our opinion, all the points of his criticism can be
resolved with an appropriate common architecture, if
people from both fields are willing to work together.
Our OS architecture [18] already includes facilities
for DB support such as various lock types, spec-
ulative locking, IO priorities including background
IO, partial ordering of IO requests, hints for various
cache replacement strategies, generic data type de-
scriptions, generic and extensible support for meta-
data, and generic support for different access mod-
els, which should be sufficient for most basic DB
needs. However we are natively working only in the
field of OS design, and we might have overlooked
some sophisticated DB needs. Thus our architecture
should be jointly revised and improved in close co-
operation with experienced DB designers.
Many of Stonebraker’s points refer to the inflexibil-
ity of conventional OS designs, in particular to draw-
backs of monolithical OS kernels. Our architecture
allows emulation of almost any static OS architec-
ture by dynamic (re)configuration. For example, we
may emulate the configuration and protection mod-
els of monolithical kernels, microkernels [16], exo-
kernels [10], single-address-space models [4], nested

6

virtual machines [6], and hybrid configurations by
different placement strategies for brick instances in
different control instances and by composition of
different image outputs of multiple control in-
stances to form a single logical image.
Another flexibility of our architecture arises from
separation between interface representation and
communication mechanisms. In extension to ideas
from [23], the wires in our model may be simul-
tanously implemented as (1) RPC, (2) LRPC [2], (3)
indirect procedure calls, (4) direct procedure calls,
and (5) macro / inline expansion. Although (4) and
(5) can be executed only on static brick subnetworks,
we may employ dynamic linking or dynamic code
generation (when sourcecode or some intermediate
code is available) for replacement of subnetworks
by dynamically generated bricks, controlled by some
automatic strategy_replace. We hope that the
latter will lead to considerable and competitive per-
formance boosts when combined with intelligent ad-
dress space placement strategies for brick instances.

5. SEAMLESS INTEGRATION
Seamless integration between OSs and DBs means
more than just using common infrastructure like
buffer, remote, mirror and transaction.
As an example, we may directly map relational ta-
bles into ”process images” at the instance level, sim-
ilar to memory-mapped files. This goes beyond the
capabilities of supplementary connections between
filesystems and DBs such as DataLinks [3]. The fol-
lowing picture is somewhat simplified, for instance
we left out adaptor_* for adjustment of different
transfer_size values:

product view_1

view_2

table1

table2dir_simple
join transaction

data

stack

code

data

stack

code

union

union
mmu_i386

mmu_i386

As another example, we may create pseudo-dir_*
bricks translating DB tables into ”filesystem direc-
tories” containing small virtual files representing
records; the granularity could be even lowered by
representing record fields as tiny files in another
type of pseudo-directories. These files could then be

browsed by user tools like file managers or accessed
via an ftp server.
Conversion of collections of files to virtual DB tables
is also possible, in order to apply relational algebra
operations to them.
At the strategy_* level, we may combine both
possibilities of treating filesystem data as DB tables,
and DB tables as filesystem data for representation
transparency. This means, we can provide a virtual
view where it does not matter in which representa-
tion data was originally fed into the system. More-
over, processing of data is possible with both clas-
sical filesystem operations and with DB operations,
e.g. SQL statements (interface diversity). As a con-
sequence, DBs and OSs will become indistict at a
higher level. Moreover, combination with network
transparency, fault tolerance etc (see section 2) at
a rather fine-grained level of control is orthogonal;
the latter property would be extremely difficult to
achieve with wrappers [17] or DataLinks [3]. Our
approach of using universal and generic brick types
for a wide spectrum of applications allows for reduc-
tion of redundancy in the overall system; neverthe-
less specialized needs can be served with different
x_* brick types where necessary.

6. CONCLUSIONS
We have presented the idea and some design exam-
ples for a common universal architecture for both
OSs and DBs. A common architecture allows for
seamless integration of OSs and DBs, leading to new
capabilities which would be hard to achieve by glue-
ing together conventional systems, or would lead to
unnecessary (performance) overhead. For example,
representation transparency and interface diversity
may be orthogonally combined with location trans-
parency or hardware architecture transparency.
Our architecture provides for some extraordinary
features: statelessness, a universal abstraction called
”nest” for uniform use throughout OSs and DBs at
all levels, dynamic composition of bricks controlled
by a separate strategy level, and many detailed
solutions differing from conventional architectures.
Implementation and performance studies are some
of our next goals. Both DBs and OSs have under-
gone years of research and improvements; achieving
a similar level with a new architecture will require
substantial effort and cooperation from many places.

7

References
[1] Code Morphing. http://www.transmeta.

com/technology/architecture/code_
morphing.html.

[2] BERSHAD, BRIAN N. and OTHERS: Lightweight Re-
mote Procedure Call. Transactions on Computer
Systems, 8(1):37–5, 1990.

[3] BHATTACHARYA, SUPARNA, C. MOHAN,
KAREN W. BRANNON, INDERPAL NARANG,
HUI-I HSIAO and MAHADEVAN SUBRAMANIAN:
Coordinating backup/recovery and data consistency
between database and file systems. In Proceedings
of the 2002 ACM SIGMOD international conference
on Management of data, pages 500–511. ACM
Press, 2002.

[4] CHASE, JEFFREY S. and OTHERS: Sharing and Pro-
tection in a Single-Address-Space Operating System.
Transactions on Computer Systems, 12(4):271–307,
1994.

[5] CHERITON, DAVID R.: UIO: A Uniform I/O System
Interface for Distributed Systems. Transactions on
Computer Systems, 5(1):12–46, 1987.

[6] CREASY, R. J.: The Origin of hte VM/370 Time-
Sharing System. IBM Journal of Research and De-
velopment, 25(5):483–490, 1981.

[7] DATE, C. J.: An Introduction to Database Systems.
Addison Wesley, 1995.

[8] DIJKSTRA, EDSGER W.: The Structure of the
“THE” Multiprogramming System. CACM,
11(5):341–346, 1968.

[9] ELMASRI, RAMEZ and SHAMKANT B. NAVATHE:
Fundamentals of Database Systems. Addison Wes-
ley, 1995.

[10] ENGLER, DAWSON R., M. FRANS KAASHOEK and
JAMES O’TOOLE: Exokernel: An Operating System
Architecture for Application-Level Resource Man-
agement. Symposium on Operating System Princi-
ples, pages 251–266, 1995.

[11] GRAY, JIM: Notes on Data Base Operating Sys-
tems. In FLYNN, M. J. and OTHERS (editors): Op-
erating Systems, An Advanced Course, volume 60 of
Lecture Notes in Computer Science, pages 394–481.
Springer-Verlag, 1978.

[12] GRAY, JIM and ANDREAS REUTER: Transaction
Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[13] HEIDEMANN, JOHN S. and GERALD J. POPEK:
File-System Development with Stackable Layers.

Transactions on Computer Systems, 12(1):58–89,
1994.

[14] HOTZ, GÜNTER: Schaltkreistheorie. De Gruyter,
1974.

[15] IEC Standard 61131-3. http://www.
holobloc.com/stds/iec/sc65bwg7tf3/
html/news.htm.

[16] LIEDTKE, JOCHEN: On � -Kernel-Construction.
Symposium on Operating System Principles, pages
237–250, 1995.

[17] ROTH, M. and P. SCHWARZ: Don’t Scrap It, Wrap
it! A Wrapper Architecture for Legacy Data Sources.
Proc. VLDB Conference, 1997.

[18] SCHÖBEL-THEUER, THOMAS: Eine neue Ar-
chitektur für Betriebssysteme. Unveröffentlichtes
Manuskript einer Monographie, 2003. Erhältlich
auf Anfrage bei schoebel@informatik.
uni-stuttgart.de.

[19] SCHÖBEL-THEUER, THOMAS: Skizze einer auf
nur zwei Abstraktionen beruhenden Betriebssystem-
Architektur: Nester und Bausteine. Arbeitspapier
und Vortrag auf dem Herbsttreffen der GI, Fach-
gruppe Betriebssysteme, Berlin, 7. – 8.11.2002.

[20] SHAW, MARY and DAVID GARLAN: Software Ar-
chitecture, Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[21] STONEBRAKER, MICHAEL: Operating System Sup-
port for Database Management. CACM, 24(7):412–
418, 1981.

[22] STONEBRAKER, MICHAEL: Problems in Support-
ing Data Base Transactions in an Operating System
Manager. Operating Systems Review, 19(1):6–14,
1985.

[23] STROUSTRUP, BJARNE: On Unifying Module In-
terfaces. Operating Systems Review, 12(1):90–98,
1978.

[24] SZYPERSKI, CLEMENS: Component Software.
Addison-Wesley, 1998.

[25] TRAIGER, IRVING L.: Virtual Memory Management
for Database Systems. Operating Systems Review,
16(4):26–48, 1982.

8

