
GENERALIZED OPTIONAL LOCKING IN DISTRIBUTED SYSTEMS

Thomas Schöbel-Theuer, Universität Stuttgart, Germany, email: schoebel@informatik.uni-stuttgart.de

ABSTRACT
We present optional locking as a method for significantly
speeding up distributed locks, and we generalize it to mul-
tiple lock types obeying a conflict relation. The generalized
version can simulate the message passing paradigm on top
of Distributed Shared Memory (DSM) with no more mes-
sages than explicit message passing would need. Thus we
argue that message passing can be viewed as a true spe-
cial case of optional locking. As a consequence, the attrac-
tiveness of DSM programming models should increase sig-
nificantly due to well-recognized advantages such as sim-
plicity and reduced software engineering cost; mixtures of
both message passing and shared data access patterns can
be treated uniformly. Measurements and simulations based
on database benchmarks indicate a substantial performance
improvement of optional locking over conventional locking
even in presence of multiple lock types.
KEY WORDS
Distributed Locking, Distributed Shared Memory, DSM,
Distributed Algorithms

1 Introduction

1.1 Problem

The mutual exclusion problem [1] occurs whenever mul-
tiple processes have to cooperate on shared data. While
efficient solutions for concurrently scheduled processes [2]
and for multiprocessors [3] have been known for a long
time, solutions for distributed systems [4] suffer signifi-
cantly from network latencies and bottlenecks. There is
less work on distributed semaphores [5], and common be-
lief is that their performance is so extremely poor that dis-
tributed systems require totally different programming con-
cepts and paradigms from standalone systems.

Due to massive performance degradation caused by
the distributed mutual exclusion problem, most distributed
systems are built on top of explicit message passing. Even
distributed shared memory (DSM) systems [6] try to avoid
that problem; instead weak memory consistency models
are advocated for enhancing concurrency and decreasing
contention. However, weak consistency models compli-
cate programming, disturbing the well-recognized cost-
effectiveness of software engineering under DSM.

The DSM model promises to reduce software engi-
neering cost significantly in comparison to explicit message
passing. In practice, explicit message passing is neverthe-
less preferred over DSM in many cases, although passing
of references and simulation of shared (composite) objects

at application level may become extremely cumbersome.
Since DSM has not met all expectations, some people even
regard research on (software) DSM as a dead topic. In
our opinion, one of the reasons is that message passing on
top of DSM is extremely inefficient due to the poor perfor-
mance of the necessary additional distributed locking over-
head. Since many distributed problems require some kind
of message passing behaviour, the conceptual elegance of
DSM and its full potential for reducing software develop-
ment cost cannot be exploited in many cases.

1.2 Main Results / Conclusions

This paper presents a method called generalized optional
locking for speeding up distributed locks by exploitation
of both spatial and temporal locality of access behaviour.
Experimental results indicate that high speedups of one or
two orders of magnitude and more are possible when com-
pared to conventional distributed locking, and even signif-
icant speedup factors when compared to some known tem-
poral lock caching strategies.

Moreover, we point out that message passing on top
of DSM can be implemented with no additional overhead
in the number of messages and network latencies, provided
that DSM is combined with a variant of generalized op-
tional locking. Thus the message passing paradigm itself
may be viewed as a special case of optional locking.

In consequence, the main obstacle of DSM can be
overcome: there is no longer a need for a separate mes-
sage passing API when application behaviour is dominated
by message passing or by mutual exclusion access patterns.
DSM combined with generalized optional locking can do it
all, can do it efficiently, and can do it within a uniform pro-
gramming model.

1.3 Significance

First, the distributed mutual exclusion problem can be
treated much more efficiently by exploitation of both spa-
tial and temporal behaviour of applications. Our experi-
ments indicate possible speedup factors from around 10 to
more than 100 in some cases.

Second, DSM should become more attractive for a
larger application area than is now. Overhead for mar-
shalling and creation of additional interfaces like CORBA
objects can be omitted in many cases, leading to substan-
tial reductions of software development cost in large (ho-
mogenous) systems. The problems of heterogenous sys-
tems should be solvable by future middleware concepts

1

based on DSM. In essence, the programming model for dis-
tributed systems should become as easy and simple as the
programming model for standalone systems, without ad-
ditionally sacrificing performance by that model. This is
contrary to some common belief. We open the door to sub-
stantial reductions of application software complexity and
development cost.

1.4 Key Ideas

In place of using substitute objects like semaphores, we
propose to issue lock requests directly on the memory re-
gions occupied by shared objects (principle of direct ma-
nipulation applied to locked objects). Region locks may
overlap and conflict in multiple different ways; unlocking
may be done in a different granularity from locking. This
alleviates not only fine-grained control over locking gran-
ularity (e.g. different lock sizing strategies for aggregated
objects) at the application level, but also allows for auto-
mated prefetching of speculatively enlarged lock regions at
the system level.

We introduce two different kinds of locks: obligatory
locks and optional locks. While an obligatory lock must
be granted at some time (otherwise the requesting process
cannot continue, e.g. deadlock or demanding a transac-
tional rollback), optional locks can be granted with smaller
size than requested, or probably need not be granted at
all. The size of optional locks can be dynamically adjusted
to the working region behaviour of distributed processes.
Whenever an optional lock has been granted to some net-
work site, it can be locally converted to (multiple) (smaller)
obligatory locks at any time without causing any network
traffic or latency.

In order to shield applications from using optional
locks directly, we present a general algorithm for prefetch-
ing of optional locks and local conversion to obligatory
locks, which can be executed by local lock managers in
a distributed system.

Emulation of message passing on top of DSM is a
simple special case of optional locking, where the size of
locked / unlocked regions is dynamically shrunk / enlarged
according to the filling level of a shared communication
buffer.

1.5 Related Work

Optional locking is different from conventional optimistic
lock prefetching, in particular because of granularity mat-
ters: optional locks usually have coarser granularity than
obligatory locks. Due to dynamic size adjustment of op-
tional locks, the choice of granularity is automated.

Almost all current locking schemas employ non-
overlapping substitute objects like semaphores, monitors,
database locks (e.g. in PostgreSQL [7]), and the like. They
can be characterized as having a unique identity, which ei-
ther does not overlap with another object instance, or over-

laps identically (e.g. in case of a conflict).
Hierarchical / intentional locks [4] and opportunistic

locks [8] also belong to the class of uniquely identifiable
locks. The latter may be viewed as a variant of hierarchical
locks with an additional lock retraction mechanism. Hi-
erarchical locks may be characterized as introducing ad-
ditional lock objects each replacing or subsuming a set of
other locks. This introduces a tree-structured order on the
set of objects, such that the order has to be explicitly used
and obeyed by the synchronisation partners.

Temporal prefetching of non-overlapping locks has
appeared in the literature, e.g. [9] augmenting applications
with specialized lock prefetch instructions similar to hard-
ware data prefetch instructions [10], and [11] automatically
predicting future lock operations from past temporal be-
haviour.

Region locks with possible fine-grained overlapping
have been implemented in Unix [12]. They can be charac-
terized as having no unique identity during their lifetime,
since locking may merge regions, and unlocking may split
regions. We found only very few serious open source ap-
plications actually using them for fine-grained locking be-
yond simple whole-file locks; closed-source applications
are hard to check. There is a special non-default configu-
ration option in MySQL enabling them for cooperation of
multiple server process instances, but in our attempt with a
newer version of MySQL it did not compile.

We don’t know of any publication of the idea of op-
tional locking prior to [13] and [14].

2 Optional Locking

This section is a condensed informal introduction to the ba-
sic ideas of optional locking on a mutually exclusive lock
type. We assume that locks are always issued on (pos-
sibly overlapping) regions of an address space similar to
Unix lockf() or fcntl() locking [12] applied to an
mmap()ed area; unlocking may be done in different gran-
ularity from locking. In this section, we assume only a
single lock type (exclusive locks) which cannot be granted
to several sites in parallel.

The central idea of optional locking is to discrimi-
nate between two kinds of lock requests: obligatory lock
requests, and optional lock requests. Obligatory lock re-
quests must be granted to an application at some time, oth-
erwise the application cannot continue with its work (dead-
lock). In contrast, optional locks need not be granted, or
need only be granted partially. In particular, a granted op-
tional lock may be smaller than requested.

Conventional applications will normally issue only
obligatory lock requests; it will be the task of local lock
managers in a distributed system to automatically add ap-
propriate optional lock requests for overall minimization of
network traffic and latencies. Whenever an optional lock
has already been granted to a local site in the network,
it may be (partially) converted to one or many (smaller)
obligatory locks at any time without causing any network

��������������
����������

��������������
����������

����������
���������� ����������

���������� 	�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

��������������
����������

�
�

�
�

���������� ����������

���������� ������������������
������������������

newly requested lock

central lockmanager, start situation

<
=

central lockmanager, new situation

granted lock

Figure 1. Example

����������
���������� ����������

���������� ������������������
������������������

��������������
����������

��������������
����������

central lockmanager, new situation

granted lock

����������
���������� ����������

 � � � � !�!�!�!�!!�!�!�!�!
"�"�"�"�""�"�"�"�"

#�#�#�##�#�#�#
$�$�$$�$�$newly requested lock

central lockmanager, start situation
<

=
<

=

retract request

retract grant

<
=

Figure 2. Possible Retract

traffic. When applications show high spatial locality of ac-
cess behaviour for their obligatory locks, speculatively en-
larged optional lock regions may transfer exclusive access
rights for many smaller obligatory locks over the network
bottleneck in a single transfer, leading to substantial perfor-
mance improvements.

In the example figure 1, obligatory lock regions are
depicted as black areas, optional lock regions as grey areas,
and free areas are left white. The upper long stripe shows
the initial situation at the central lock manager. Some re-
gions have been optionally locked, and some subsets of
them have been obligatorily locked. Then a new lock re-
quest arrives from some local lock manager, consisting of
an obligatory lock surrounded by a larger optional lock
region which has been speculatively enhanced from the
obligatory region. Since optional lock regions can only be
exclusively granted to a single requestor, the optional part
must be shortened in order to immediately fulfill the re-
quest. The granted optional lock is thus a smaller subset of
the requested one.

Figure 2 shows a variant of the same initial situation:
at the right side, the requested optional part and the already
granted optional part of another site are overlapping. In-
stead of leaving that optional part to the current holder (aka
”first come, first serve”), we could try to get back some
optional part from that third party:

Upon detection of an overlap of an optionally re-
quested part with an already granted optional part, the cen-
tral lock manager policy may decide to issue a retract re-
quest to the current holder of that optional part. That cur-

%�%�%�%%�%�%�%%�%�%�%
&�&�&&�&�&&�&�&

'�'�'�''�'�'�''�'�'�'
(�(�((�(�((�(�(

)�)�)�)�))�)�)�)�))�)�)�)�)
��*�*�**�*�*�*�**�*�*�*�*

+�+�++�+�++�+�+
,�,�,,�,�,,�,�,

-�-�--�-�-
.�.�..�.�.

/�/�/�//�/�/�/
0�0�00�0�0 1�1�1�11�1�1�1

2�2�22�2�2 3�3�3�3�33�3�3�3�3
4�4�4�4�44�4�4�4�4

5�5�55�5�5
6�6�66�6�6

7�7�77�7�7
8�8�88�8�8

newly requested lock

central lockmanager, start situation

retract request

retract grant

<
=

<
=

<
=

central lockmanager, new situation

granted lock

Figure 3. Mandatory Retract

rent holder responds with a retract grant, which may be a
subset of the retract request. Of course, only optional parts
which have not yet been converted to obligatory parts can
be retracted without waiting. When a conflicting obligatory
lock has been granted locally in the meantime, the retract
grant will be smaller than the retract request. In our exam-
ple, the local lock manager policy has decided to bisect the
transferable retract area and to keep the remaining half for
itself, speculating that it could be needed locally in the fu-
ture. As a final result, the original requestor can be granted
a larger optional lock than compared with the first example.

In figure 3 the retraction mechanism is necessary for
avoiding deadlock. Here the initial situation is different
from the first two examples: the requested obligatory part
conflicts with an already granted optional part. If the cen-
tral lock manager would not decide to send a retract re-
quest, deadlock would occur if nothing would ever ”force”
the holder of that optional region to return it. Thus the re-
tract request is enriched with the obligatory part in order
to tell the current owner of the optional part that he must
give back at least that part for avoiding potentially unnec-
essary deadlock. In the example, the optional part between
both obligatory locks is bisected by the local lock manager
policy. In general, there is only one reason for denying
retraction of an obligatory part: when another conflicting
obligatory lock is already locally present, we must wait un-
til it has been released by the application. If the application
will never release it, deadlock will occur, but it will also
occur if we omit any optional locking completely. We just
have to ensure that we don’t introduce additional deadlocks
by optional locking.

3 Message Passing and Multicast

Conventional DSMs are often implemented on top of soft-
ware message passing, but not always. In case of hard-
ware DSM implementations, the granularity of messages,
the communication protocols, and properties like atomic-
ity may be different from software communication needs.
Thus it makes sense to look at the converse: simula-
tion of message passing on top of DSM. Another moti-

���
���
���
���

�������
�������
�������
�������

�������
�������
�������
�������

lockmanager (=writer)

request (reader)

grant (reader)

m

m’

Figure 4. Simulation of Message Passing by Optional
Locking

vation comes from the well-known observation that mes-
sage passing on top of conventional software DSMs is ex-
tremely slow due to additional latencies caused by dis-
tributed semaphore operations or the like. This is an ob-
stacle for the DSM programming model, although it oth-
erwise has a well-recognized high potential for simpli-
fying programming of distributed systems; overhead like
marshalling and creation of additional interfaces like in
CORBA can be saved, leading to lower software devel-
opment cost. We believe that bad message passing per-
formance over DSM could have had a high impact at the
wide-spread practical preference of explicit message pass-
ing over DSM. We present a method for overcoming this
obstacle.

The following picture illustrates the basic idea for
simulation of message passing on top of DSM combined
with optional locking and an appropriate prefetching strat-
egy for linear scans. To simplify the presentation and to
omit discussion of some unrelated problems, we assume
the existence of an infinite message buffer. Generalizations
to finite circular ring buffers etc. are left to the reader. Fur-
thermore, we assume that data transfer is integrated with
lock / unlock messages and thus does not cause extra mes-
sages.

In the first model, we assume exactly one writer and
one reader. Both are assumed to have a local read-pointer
resp. write-pointer indexing the buffer at the current read
or write position. Furthermore, we assume that the writer
is identical with the central lock manager.

Figure 4, first strip: the writer had locked the whole
buffer upon initialization of the system using an exclusive
write-lock, and currently has already released some part of
that lock at the left. Writing m bytes works as follows:
at the write pointer position (coinciding with the start of
the locked area), m bytes are written (depicted dark grey).
Afterwards that area is unlocked (leaving the black rest)
und the write pointer is incremented by m. Next strip: the
reader then tries to aquire an obligatory non-exclusive read-
lock (also depicted black) with requested size m′ at its cur-
rent read pointer position. An optional read-lock request
for the whole buffer (depicted light grey) is added by the
local lock manager. The last strip shows the granted locks.
In general, m′ bytes can only be atomically read at the read
pointer position and the read pointer be incremented by m′

after the obligatory part has been fully granted.
When this game is repeated n times at both sides in

an interleaved way with m = m′, the reader generates n
lock requests and the writer responds with n grants, lead-
ing to a total of 2n messages in worst case. Retracts are not
necessary due to the assumption of identity of writer and
manager1. These numbers of messages correspond to mes-
sage passing with explicit acknowledge of receipt of each
individual message.

However, when the reader gets late with respect to
the writer, the number of grants issued by the writer may
be smaller than n, transferring multiple blocks of size m
with a single message. This corresponds to message coa-
lescing in communication systems, but performed automat-
ically by the lock manager strategy.

In a second model, the total number of messages can
be decreased from 2n to n + 1 if the algorithm is modified
as described informally: optional lock requests are buffered
at the central manager for a longer time, until they have
been either completely fulfilled or until cancelled by the
original requestor. Each time a new part of the optional re-
gion becomes available, the corresponding optional part is
sent to the requestor incrementally. With that modification,
only the first request of the reader need to specify the op-
tional read lock. The first request issued by the reader cor-
responds to channel setup in conventional message passing
systems. In this model, network latencies for transfer of
data will be comparable to conventional “push”-strategies
of message passing systems. By requesting optional re-
gions of some certain size w, mixed strategies between
both models can be created which roughly correspond to
windowing in conventional message passing systems (e.g.
TCP windows in the Internet Protocol).

It is easy to see that all mentioned model variants can
be directly used to support multiple readers, thanks to us-
age of read-locks versus write-locks. Since each reader has
its own local read pointer, arbitrary delays will be handled
correctly. Similar to notes in [14], specializations to finite
circular ring buffers or other communication structures are
possible and left to the reader.

Finally, note that this usage of optional locking does
not exploit the full power of it. In some sense, locks are
“misused” for one-way synchronization between writer and
reader. In general, locks may be used for achieving arbi-
trary permutations of access synchronization (mutual ex-
clusion), which is not used here. Thus we conclude that
usage of optional locking this way is a true special case of
general optional locking, and that the synchronization be-
hind the message passing paradigm can be viewed as a true
special case of optional locking.

4 Generalized Algorithm

In the following semi-formal description of a generalized
algorithm, nondeterministic choices are indicated by the

1The same number of messages besides initialization will occur if the
reader instead of the writer is made identical to the manager; the difference
is only that retract requests and grants are exchanged instead of direct
requests and grants.

wording “choose some ...”. We don’t discuss strategies and
heuristics for nondeterministic choices in this paper.

Let A be a totally ordered set of addresses. Let T be
an alphabet, called lock types alphabet. Let C ⊆ T × T be
a symmetric relation, called lock conflict table. See figure
6 as an example. In contrast to [14], there may exist lock
types which don’t conflict among each other, i.e. they may
be granted to many network sites in parallel.

A lock type t1 is said to be weaker than t2, denoted
t1 ≤ t2 iff for all t′ ∈ T : (t′, t1) ∈ C =⇒ (t′, t2) ∈ C. In-
tuitively, this means that t2 is “at least as strong” as t1 with
respect to conflicts with other locks. For example, classical
read locks are weaker than write locks. In general the lock
weakness relation is a partial order. As an example, figure 7
shows the lock weaknesses of PostgreSQL as derived from
the lock conflict table from figure 6.

A lock l is a pair l = (I, t) consisting of a locking
interval I = [a, b] with a, b ∈ A, a ≤ b and a lock type
t ∈ T . Two locks l1 = ([a1, b1], t) and l2 = ([a2, b2], t)
with same lock type t are said to be mergeable to l3 =
([a3, b3], t), iff [a1, b1] ∪ [a2, b2] is an interval (without a
hole) and [a3, b3] = [a1, b1] ∪ [a2, b2]. A set of locks L
is said to be reduced, iff all pairs of mergeable locks have
been merged. In the sequel, we assume that all sets of locks
are always kept in reduced state.

Two locks l1 = ([a1, b1], t1) and l2 = ([a2, b2], t2)
are said to conflict, denoted l1 † l2, iff [a1, b1]∩ [a2, b2] 6= ∅
and (t1, t2) ∈ C. A lock l is said to conflict with a set of
locks L, denoted l † L, iff there exists an l′ ∈ L with l † l′.
Similarly, two sets of locks L1 and L2 are said to conflict
with each other, iff there exists l1 ∈ L1 and l2 ∈ L2 with
l1 † l2.

A lock l1 = ([a1, b1], t1) is said to be present in lock
l2 = ([a2, b2], t2), denoted l1 ≤ l2, iff [a1, b1] ⊆ [a2, b2]
and t1 ≤ t2. When additionally t1 = t2 holds, we say
that l1 is strongly present in l2, denoted l1 5 l2. A lock
l is present in set L iff there exists l′ ∈ L with l ≤ l′.
Similary, a set L1 is present in L2 iff all l ∈ L1 are present
in L2. The same notions are analogously defined for strong
presence by denoting5 instead of ≤.

The subtracted set L′ := L − l with L being a set of
locks and l a lock, is defined as the largest L′ ≤ L such
that l does not conflict with L′.

Let S be a finite set of network sites, with s ∈ S being
a special site called central server. We use the following
sets of locks in our algorithm as illustrated in figure 5:

Ls is the set of locally aquired obligatory locks at each
site s ∈ S, and Rs the set of reserved optional locks. Con-
sequently, Ls and Rs are the sets of obligatory resp. re-
served optional locks as known by the central lock man-
ager. RPend

s denotes the set of all pending optional retract
requests known to the central manager, which are currently
processed by other sites.

In order to model network messages flowing through
the network, we introduce the following sets of locks:
LRRq

s,s is the set of (obligatory, optional) lock request pairs
currently flowing from some site s to the central lock man-

Ls Rs

Ls

Lsi
Rsi

LR
Rq
s,s

LRS
RtRq
s,si

RPend
sRs

LRGr
s,s

LRSRtGr
si,s

originator

server

other sites

1

2b

2b
4a

2b

4b

3

3
3

5

RTrans
si,s

LLock
s,s LUnlock

s,s

Figure 5. Data Flow

ager s. LRGr
s,s is the set of (obligatory, optional) lock grant

pairs currently flowing from the central lock manager s to
some network site s. Local lock aquisitions are propagated
asynchronously to the central manager via the set of locks
LLock

s,s . Lock releases are similarly propagated via LUnlock
s,s .

In order to describe retract requests and retract grants,
we introduce the notation LRSRtRq

s,si
for retract request

triples (obligatory, optional, originating site) flowing from
the central manager to site si, and LRSRtGr

si,s
for retract

grants flowing in the opposite direction. We add the ability
to transfer an optional lock directly from a site s to another
site s′ by the notation RTrans

s,s′ , denoting transfer optional
locks. All these sets are assumed to be empty at startup of
the distributed system.

Each step of the following algorithms is assumed to
run atomically, even if different threads are running in par-
allel. All steps except step 1 are assumed to be executed by
some (server) thread in an endless loop.

Algorithm A (aquisition of obligatory lock l =
([a, b], t) at local site s):

Step 1 (at local site s): if l ≤ Rs, then if l † Ls then
block the calling thread, else add l to Ls and to LLock

s,s and
end the algorithm. Else, choose some optional lock r with
l ≤ r (for example, take the largest r with l 5 r such that
¬(r † Rs)). Add (l, r) to LRRq

s,s (i.e. send it as request pair
to the central manger) and block the calling thread.

Step 2a (at central manager s, executed by some
server thread): upon receipt of request l ∈ LLock

s,s , remove
it from LLock

s,s and add it to Ls.

Step 2b (at central manager s): upon receipt of request
pair (l, r) ∈ LRRq

s,s, remove it from LRRq
s,s. Choose some r′

with l ≤ r′ ≤ r (e.g. such that there is no conflict r′ † Ls).
Wait until r′ does not conflict with RPend

s . If r′ does not
conflict with Rs, then add (l, r′) to both (Ls, Rs) and to
LRGr

s,s . Else (when r′ conflicts with Rs), add it to RPend
s

and add (l, r′, s) to LRSRtRq
s,si

for each site si /∈ {s, s}. 2

Step 3 (at each local site si): upon receipt of retract
request (l, r′, s) ∈ LRSRtRq

s,si
, remove it from LRSRtRq

s,si
.

Wait until there is no conflict l † Lsi
. Choose some ri with

l ≤ ri 5 r′ 3 such that there is no conflict ri † Lsi
. Sub-

tract ri from Rsi
. Add (l, ri, s) to LRSRtGr

si,s
and add ri to

RTrans
si,s

.
Step 4a (at central manager s): wait until all

(l, ri, s) ∈ LRSRtGr
si,s

with ri = ([ai, bi], ti) have ar-
rived from all sites si /∈ {s, s}. Compute r′′ :=
(
⋂

[ai, bi], min{ti}). Remove each (l, ri, s) from each
LRSRtGr

si,s
. Remove the old r′ from RPend

s . Add (l, r′′)
to (Ls, Rs).

Step 4b (at local site s): wait until all ri =
([ai, bi], ti) ∈ RTrans

si,s
have arrived from all sites si /∈

{s, s}. Compute r′′ := (
⋂

[ai, bi], min{ti}). Remove each
ri from each RTrans

si,s
. Add r′′ to Rs. Unblock all threads

waiting for lock l and let them re-execute step 1.
Step 5 (at local site s): upon receipt of grant (l, r′),

remove it from LRGr
s,s . Add r′ to Rs. Unblock all threads

waiting for lock l and let them re-execute step 1.
Algorithm B (release of a lock l = ([a, b], t) at local

site s):
Step 1 (at local site s): subtract l from Ls. Add l to

LUnlock
s,s . Unblock any threads waiting for lock l (if any) .

Step 2 (at central server s, executed by some server
thread): upon receipt of release request l ∈ LUnlock

s,s , re-
move it from LUnlock

s,s and subtract it from Ls.
Note that this version of the algorithms will never

release an optional lock without explicit demand by a re-
tract request; thus Rs will always grow and never shrink.
Improved versions should use some LRU-like aging strat-
egy for returning optional regions which have not been ac-
cessed for a longer time; this will decrease the probability
for retracts becoming necessary.

In the following correctness proof, we consider all
possible data flow paths through algorithm A: path0 is
1 2a, path1 is 1 2b 5, and path2 is 1 2b

3
{ 4a
 4b

.

Lemma 1: Ls ≤ Rs always holds.
Proof: at startup, it holds trivially. The only place

where Ls is increased is step 1 of algorithm A, and it occurs
only after the added lock is ensured to be present in Rs. The
only place where some Rs is shrunk is step 3, and it occurs
only when the removed part rsi

does not conflict with Lsi
.

Thus the condition can never be violated. �
Lemma 2: Rs ≤ Rs ∪ RPend

s for any site s.
Proof: startup is trivial. Path0 does not change any-

thing relevant for the condition. Whenever path1 adds

2The algorithm can certainly be improved in various ways. In par-
ticular, step 2b needs to send retract requests only to those sites actually
possessing a (potentially) retractable lock; doing so would complicate step
4b somewhat. We have left out bookkeeping of ownership of locks to sim-
plify matters for easier understanding of the basic principle.

3When ≤ on T is a total order (at least in the relevant part), we can use
≤ instead of 5 at this condition. Otherwise min{ti} could not be unique
later at steps 4a and 4b.

some r′ to Rs at step 5, it has been added to Rs previ-
ously at step 2b. When path2 adds some r′′ to Rs at step
4b, an r′ ≥ r′′ had beed added to RPend

s at step 2b before.
When r′ is removed from RPend

s at step 4a, the same r′′ as
computed in step 4b is added to Rs instead, not violating
the original condition even if step 4a is executed after step
4b (conversely, it will hold anyway). RPend

s is only shrunk
at step 4a without causing harm, and Rs is never shrunk.
Thus the condition can never be violated. �

Lemma 3: All Rs are always pairwise non-
conflicting, i.e. ¬(Rsi

† Rsj
) for i 6= j.

Proof: startup is trivial. Path0 does not change any
Rs. When path1 adds some r′ to Rs at step 5, the r ≥ r′

from the previous step 2b did not conflict with Rs∪RPend
s ;

due to lemma 2 it also cannot conflict with any other Rsj
.

When path2 adds some r′′ to Rs in step 4b, an ri ≥ r′′ has
been subtracted from Rsi

at all other sites si, making them
non-conflicting. Thus the condition can never be violated.
�

Theorem 1: All Ls are always pairwise non-
conflicting.

Proof: follows directly from lemma 3 and lemma 1.
�

Lemma 4: whenever Rs is increased by some r′′′ on
behalf of some l, that l is present in l′′′.

Proof: path0 does not apply. When path1 adds
r′ =: r′′′ to Rs at step 5, l ≤ r′ has been ensured by
the previous step 2b. When path2 adds r′′ =: r′′′ =
(
⋂

[ai, bi], min{ti}) to Rs at step 4b, all other sites si have
obeyed l ≤ ri = ([ai, bi], ti) at their previous step 3, im-
plying r′′ ≥ l. �

Theorem 2: provided that communication is reli-
able and that arbitrary permutations of mutually conflicting
obligatory locks l can never lead to a deadlock with purely
obligatory locking, algorithm A has no deadlock, too.

Proof: When there are no infinite waits inside of steps
2b, 3, 4a or 4b, any of the paths will finally complete due
to the assumption of reliable communication, and due to
lemma 4 ensuring that each thread delayed at step 1 can
eventually continue. It remains to show that none of the
waits (if any) is infinite. We can totally order all starts
of executions of any steps via a physical Lamport clock
[15]. If there are some infinite waits, one of them must
have started first according to that ordering. The waits at
steps 4a and 4b cannot occur as the first infinite one, be-
cause they depend on the waits at step 3 one of them must
then have occurred as the first infinite one. The wait at
step 3 is always finite due to the assumption of deadlock-
freedom at the obligatory level which guarantees that any
local obligatory lock will be released after finite time. The
wait at step 2b depends on release of RPend

s which must
occur after finite time (otherwise it would not be the first
infinite wait, leading to a contradiction). Thus there is no
first infinite wait at all. �

5 Experiments

Many applications use different lock types such as read-
locks versus write-locks, in order to reduce the probabil-
ity of lock contention. Database systems often use even
more lock types, such as intentional or hierarchical locks
[16]. PostgreSQL [7], for example, uses 8 different lock
types with a compatibility matrix as depicted in figure 6.
Combining optional locking with different lock types is ex-
pected to improve the performance of distributed locking.

We implemented the algorithm from section 4, simu-
laring a client-server model consisting of a central server
and multiple clients. The experiment is tailored to mu-
tual exclusion, not message passing. Other variants like
replicated servers or arbitrarily distributed replicas among
clients can be derived from it; for some general ideas see
[14].

We measured the runtime locking behaviour of three
different database benchmarks, called DBT1 version 1.3,
DBT2 version 0.21 (beta stage), and DBT3 version 1.3
[17], which should be very similar to the well-known TPC-
W, TPC-C, and TPC-H database benchmarks issued by the
Transaction Processing Council, respectively. For some
differences between these benchmarks see [17]. Synthetic
database benchmarks can tell us some trends about the mu-
tual exclusion behaviour of some kinds of applications, and
about the speedup potential of optional locking achievable
with some distributed applications.

Our experiments were carried out on a dual processor
1.8 GHz Opteron machine with 6 GB main memory, run-
ning under a 64-bit version of SuSe Linux version 9 and
kernel 2.6.0. We installed PostgreSQL version 7.3.4. We
chose that system because of easy access to source code.

We modified PostgreSQL by a patch of the internal
lock manager (file src/backend/storage/lmgr/
lock.c) with printf() statements. It writes the type
of operation (lock / unlock), the realtime timestamp, the
process id of the backend process, lock mode, transac-
tion id, the database id dbID, internal relation id relID,
and the internal object id objID of PostgreSQL backend
processes to a log file. The latter three values identify a
lock uniquely when taken together. PostgreSQL was de-
signed with uniquely identifiable locks in mind, not with
region locks. In order to approximate our kind of lock-
ing, we remapped the database id, relation id and object
id to a single hypothetical linear address space by the for-
mula addr = objID + (max_objID − min_objID +
1) ∗ (relID + (max_relID −min_relID + 1) ∗ dbID),
such that each PostgreSQL lock was treated as an obliga-
tory lock of length 1.

We wrote a simulation program executing the algo-
rithm from section 4 on the measured locking patterns, as if
they had been executed on n sites of a network, with n be-
ing a choosable parameter. Only locks stemming from dif-
ferent PostgreSQL backend server processes were spread
to the simulated network, i.e. we simulated distribution of
nearly unmodified PostgreSQL server processes.

We compare 5 different versions of possible prefetch-
ing strategies:

a) at step 1 of algorithm A, choose always the full ad-
dress space and the same lock type for requesting optional
locks. At steps 2b and 3, always choose the maximum re-
gion satisfying the respective condition.

b) like strategy a), but at step 1 request the largest area
at both sides of the requested lock up to the nearest globally
known obligatory lock.

c) like strategy a), but at step 3 choose only the half
of the available area at both sides of the obligatory part for
retraction (bisecting strategy).

d) like c), but at step 1 use strategy b).
e) at step 1), choose the smallest possible optional re-

quest, which is always the same as the obligatory lock. This
results in no spatial prefetching at all, but retains temporal
caching of locks (cf. [14]).

Each benchmark was run with different scale factors
(depending on the benchmark type [17]). The tables in
the appendix show the hit rates in percent (i.e. percent-
age of times a lock request can be granted without any
network communication), as if the backend processes had
been spread to n ∈ {1, 2, 4, 8, 16, 32} simulated network
sites. The last column shows absolute and relative speedup
factors for n = 32. The absolute speedup factor is (100 /
miss rate), where miss rate is (100 - hit rate); when there
are no hits, the speedup factor will be 1. This is motivated
by the observation that network latencies are usually many
orders of magnitude slower than processor cycles, so we
approximately neglect local operations and count only the
number of network transmission cycles which would occur
when caching of locks is either enabled or disabled. The
relative speedup factor relates the miss rates of strategy a)
to d) to strategy e), showing the benefit of spatial prefetch-
ing in isolation.

We ran two simulations on each benchmark: the first
simulated generalized optional locking obeying the Post-
greSQL lock types. The second treated all lock types
equally as exclusive locks (cf. results in [14]), which may
lead to some distortions, but roughly indicates the influence
of lock types when compared to the first simulation.

Although the experiments may contain some distor-
tions as more deeply discussed in [14] and although they
are probably not representative for all possible kinds of ap-
plications, we cautiously try to identify some trends. Treat-
ing all lock types as equal appears to be an order of magni-
tude worse than using generalized optional locking. Differ-
ent applications may perform very differently: while dbt1
and dbt3 appear well-suited for generalized optional lock-
ing, the relative speedup of dbt2 does not take off in the
generalized version as the others. This behaviour is ex-
pected, because TPC-C executes many short-time transac-
tions. A look at the log file reveals that only a small number
of locks is issued per transaction, and a great deal of locks is
allocated with linearly incremented lock numbers serving
as pseudo-locks for transaction IDs. When adjacent mem-
bers of the linear scan are allocated by different network

sites, spatial prefetching in that area is near its worst case
(thrashing) and will not yield any advantage over purely
temporal prefetching.

When interpreting the simulation results, we should
be aware that PostgreSQL has neither been designed with
region locks or spatial behaviour of locks in mind, nor has
it been designed for running distributedly. Thus there are
high chances that there may exist other applications which
will profit from optional locking even more than indicated
by our benchmarks. On the other hand, we found a case
very close to the worst case. In summary, our results sug-
gest that much more in-depth exploration of generalized
optional locking is necessary.

6 Future Research

Generalized optional locking may become a good candi-
date as a base mechanism for future distributed systems
when combined with DSM. Contrary to some common be-
lief, it is possible to obtain good performance of message
passing on top of DSM when employing generalized op-
tional locks. Thus it is feasible to build up distributed sys-
tems on the DSM paradigm solely as a uniform base mech-
anism. This would enable many advantages, in particu-
lar allow easy passing of references and remove the well-
known annoying difficulties of simulating shared (compos-
ite) objects at application level by explicit message passing.

In order to become practical, certainly much more
work has to be done on (generalized) optional locking and
on integration with DSM.

Preferring the DSM model even for message pass-
ing will not render middleware superfluous. There remain
problems like security, safety, recovery, heterogenity of
hardware / software platforms and architectures, and many
more. Middleware will have to focus on these issues un-
der changing circumstances. For example, large parts of
middleware could be implemented as shared libraries under
DSM, provided that architecture-independent fat binaries
or other relocation / indirection / translation mechanisms
are available.

Our experiments and simulations indicate that gener-
alized optional locking is also a good candidate for speed-
ing up distributed locks, even if not used for message pass-
ing in a narrow sense, and even under control of current
middleware paradigms.

There remains much work to be done, in particu-
lar on models of application behaviour, prefetching strate-
gies, thrashing detection and prevention, optimization of
the working region behaviour of applications, performance
forecasts for particular application behaviours, fault toler-
ance, and many practical aspects of implementation and
handling. This will certainly require cooperation among
many researchers and research disciplines.

References

[1] P. B. Hansen, “Concurrent programming concepts,” Com-
puting Surveys, vol. 5, no. 4, pp. 223–245, 1973.

[2] E. W. Dijkstra, “Solution of a problem in concurrent pro-
gramming control,” CACM, vol. 8, no. 9, p. 569, 1965.

[3] H. S. Bright, “A philco multiprocessing system,” AFIPS
Conference, vol. 26, no. 2, pp. 97–141, 1964.

[4] W. H. Kohler, “A survey of techniques for synchronization
and recovery in decentralized computer systems,” Comput-
ing Surveys, vol. 13, no. 2, pp. 159–183, 1981.

[5] M. Ramachandran and M. Singhal, “Distributed
semaphores,” citeseer.nj.nec.com/315992.html.

[6] M. R. Eskicioglu, “A comprehensive bibliography of
distributed shared memory,” Operating Systems Review,
vol. 30, no. 1, pp. 71–96, 1996.

[7] “Postgresql home page,” http://www.postgresql.org/.

[8] “Opportunistic locks,” http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/fileio%/base/
opportunistic_locks.asp.

[9] M. Karlsson and P. Stenstrom, “Lock prefetching in
distributed virtual shared memory systems — initial
results,” Newsletter of the IEEE CS Technical Committee
on Computer Architecture, pp. 41–48, 1997. [Online].
Available: citeseer.ist.psu.edu/karlsson97lock.html

[10] S. P. Vanderweil and D. J. Lija, “Data prefetch mechanisms,”
Computing Surveys, vol. 32, no. 2, pp. 174–199, 2000.

[11] C. B. Seidel, R. Bianchini, and C. L. Amorim, “Exploiting
lock-related primitives in distributed shared-memory sys-
tems,” Technical report ES-517/99, COPPE/UFRJ, citeseer.
ist.psu.edu/408110.html, 1999.

[12] W. R. Stevens, Advanced Programming in the Unix Environ-
ment. Addison-Wesley, 1997.

[13] T. Schöbel-Theuer, “Verfahren zur regulierung des daten-
zugriffs bei einem aus mehreren einzelsystemen bestehen-
den system auf wenigstens eine datenspeichereinrichtung,”
patent application PCT / EP03 / 10794.

[14] ——, “Speculative prefetching of optional locks in dis-
tributed systems,” in PDCN 2004, Innsbruck. IASTED
conference proceedings, 2004.

[15] L. Lamport, “Time, clocks, and the ordering of events in
a distributed system,” CACM, vol. 21, no. 7, pp. 558–565,
1978.

[16] C. J. Date, An Introduction to Database Systems. Addison
Wesley, 1995.

[17] “Osdl database test suite,” http://www.osdlab.org/projects/
performance/.

A Appendix

Figure 6. Compatibility matrix used by PostgreSQL

1 2 3 4 5 6 7 8

1 + + + + + + + -

2 + + + + + + - -

3 + + + + - - - -

4 + + + - - - - -

5 + + - - + - - -

6 + + - - - - - -

7 + - - - - - - -

8 - - - - - - - -

Figure 7. Lock weakness relation of PostgreSQL

1 2 3 4 5 6 7 8

1 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

2 ≤ ≤ ≤ ≤ ≤ ≤ ≤

3 ≤ ≤ ≤ ≤ ≤

4 ≤ ≤ ≤ ≤

5 ≤ ≤ ≤ ≤

6 ≤ ≤ ≤

7 ≤ ≤

8 ≤

Figure 8. dbt1, generalized locks

scale 1 sites 2 sites 4 sites 8 sites 16 sites 32 sites speedup

a 99.99 99.37 99.11 98.95 98.84 98.72 78 / 5.41
b 99.99 99.38 99.14 98.96 98.85 98.73 78 / 5.45

100000 c 99.99 99.39 99.15 98.98 98.85 98.70 76 / 5.32
d 99.99 99.42 99.17 98.98 98.86 98.71 77 / 5.36
e 98.83 98.47 97.97 97.18 95.77 93.08 14 / 1.00
a 99.99 99.37 99.08 98.95 98.79 98.70 76 / 5.28
b 99.99 99.41 99.13 98.98 98.81 98.71 77 / 5.32

10000 c 99.99 99.43 99.15 99.00 98.80 98.67 75 / 5.16
d 99.99 99.45 99.20 99.04 98.85 98.72 78 / 5.36
e 98.73 98.39 97.94 97.17 95.71 93.14 14 / 1.00
a 99.99 99.26 98.99 98.85 98.76 98.64 73 / 4.85
b 99.99 99.29 99.02 98.85 98.75 98.62 72 / 4.78

1000 c 99.99 99.30 99.05 98.89 98.79 98.66 74 / 4.93
d 99.99 99.33 99.07 98.93 98.83 98.66 74 / 4.93
e 98.79 98.40 97.97 97.20 95.84 93.40 15 / 1.00

Figure 9. dbt1, only exclusive locks

scale 1 sites 2 sites 4 sites 8 sites 16 sites 32 sites speedup

a 100.00 93.78 91.30 90.15 89.81 89.56 9 / 2.17
b 100.00 93.64 91.12 89.96 89.62 89.37 9 / 2.13

100000 c 100.00 92.77 89.78 88.44 88.03 87.72 8 / 1.84
d 100.00 87.19 83.41 86.67 86.42 86.11 7 / 1.63
e 98.87 86.07 80.78 78.67 78.00 77.38 4 / 1.00
a 100.00 94.19 91.47 90.65 89.92 89.68 9 / 2.26
b 100.00 94.06 91.36 90.53 89.79 89.55 9 / 2.23

10000 c 100.00 93.01 89.78 88.77 87.85 87.57 8 / 1.88
d 100.00 87.73 83.51 86.93 86.29 86.08 7 / 1.68
e 98.77 86.49 80.82 78.93 77.23 76.65 4 / 1.00
a 100.00 94.12 92.06 91.50 91.22 90.98 11 / 2.44
b 100.00 93.93 91.87 91.31 91.02 90.78 10 / 2.39

1000 c 100.00 92.98 90.44 89.72 89.34 88.98 9 / 2.00
d 100.00 87.36 83.56 87.98 87.95 87.61 8 / 1.78
e 98.83 86.30 81.27 79.37 78.64 77.98 4 / 1.00

Figure 10. dbt2, generalized locks

scale 1 sites 2 sites 4 sites 8 sites 16 sites 32 sites speedup

a 100.00 99.09 98.54 98.00 97.39 96.81 31 / 0.93
b 100.00 99.23 98.75 98.16 97.57 96.98 33 / 0.98

1 c 100.00 99.14 98.59 98.04 97.42 96.83 31 / 0.93
d 100.00 99.24 98.77 98.29 97.73 97.17 35 / 1.05
e 99.41 98.94 98.60 98.17 97.62 97.04 33 / 1.00
a 100.00 99.10 98.55 98.00 97.40 96.82 31 / 0.92
b 100.00 99.24 98.77 98.25 97.58 97.01 33 / 0.98

2 c 100.00 99.15 98.60 98.04 97.44 96.85 31 / 0.93
d 100.00 99.24 98.76 98.28 97.75 97.23 36 / 1.06
e 99.41 98.94 98.60 98.17 97.64 97.07 34 / 1.00
a 100.00 99.10 98.54 98.00 97.41 96.85 31 / 0.92
b 100.00 99.26 98.70 98.17 97.61 97.08 34 / 1.00

4 c 100.00 99.15 98.60 98.05 97.45 96.88 32 / 0.93
d 100.00 99.25 98.76 98.29 97.76 97.24 36 / 1.05
e 99.40 98.94 98.59 98.17 97.65 97.09 34 / 1.00
a 100.00 99.05 98.47 97.86 97.19 96.61 29 / 0.92
b 100.00 99.18 98.68 98.09 97.36 96.80 31 / 0.98

8 c 100.00 99.11 98.55 97.94 97.27 96.68 30 / 0.94
d 100.00 99.19 98.68 98.13 97.53 96.99 33 / 1.04
e 99.42 98.91 98.52 98.03 97.43 96.87 31 / 1.00

Figure 11. dbt2, only exclusive locks

scale 1 sites 2 sites 4 sites 8 sites 16 sites 32 sites speedup

a 100.00 95.83 93.87 92.88 92.42 92.20 12 / 1.47
b 100.00 95.82 93.86 92.87 92.41 92.19 12 / 1.47

1 c 100.00 95.55 93.45 92.39 91.90 91.66 11 / 1.37
d 100.00 94.00 91.33 91.93 91.68 91.47 11 / 1.34
e 99.41 93.64 90.90 89.50 88.85 88.54 8 / 1.00
a 100.00 95.87 93.74 92.75 92.29 92.01 12 / 1.46
b 100.00 95.86 93.73 92.74 92.28 92.00 12 / 1.45

2 c 100.00 95.58 93.28 92.22 91.73 91.42 11 / 1.36
d 100.00 94.06 91.17 91.84 91.49 91.21 11 / 1.32
e 99.41 93.69 90.76 89.39 88.74 88.37 8 / 1.00
a 100.00 95.82 93.83 92.80 92.30 92.06 12 / 1.46
b 100.00 95.81 93.82 92.79 92.30 92.06 12 / 1.46

4 c 100.00 95.51 93.36 92.24 91.70 91.44 11 / 1.36
d 100.00 94.02 91.23 91.75 91.45 91.22 11 / 1.32
e 99.40 93.65 90.84 89.39 88.71 88.38 8 / 1.00
a 100.00 95.43 93.14 92.01 91.44 91.18 11 / 1.37
b 100.00 95.42 93.14 92.01 91.43 91.18 11 / 1.37

8 c 100.00 95.04 92.55 91.31 90.68 90.40 10 / 1.26
d 100.00 93.82 90.87 90.86 90.36 90.11 10 / 1.22
e 99.42 93.48 90.47 88.98 88.23 87.89 8 / 1.00

Figure 12. dbt3, generalized locks

scale 1 sites 2 sites 4 sites 8 sites 16 sites 32 sites speedup

a 100.00 99.05 98.71 98.51 98.38 98.28 58 / 1.98
b 100.00 99.08 98.76 98.62 98.55 98.50 66 / 2.27

0.025 c 100.00 99.09 98.74 98.55 98.41 98.31 59 / 2.02
d 100.00 99.03 98.77 98.63 98.51 98.44 64 / 2.19
e 97.95 97.77 97.67 97.50 97.18 96.59 29 / 1.00
a 100.00 99.15 98.86 98.67 98.57 98.50 66 / 2.05
b 100.00 99.20 98.94 98.81 98.74 98.70 76 / 2.37

0.05 c 100.00 99.19 98.90 98.72 98.61 98.55 68 / 2.12
d 100.00 99.13 98.96 98.82 98.75 98.65 74 / 2.28
e 98.17 98.01 97.91 97.73 97.43 96.92 32 / 1.00
a 100.00 99.26 99.02 98.89 98.81 98.76 80 / 2.03
b 100.00 99.35 99.13 99.03 98.98 98.76 80 / 2.03

0.1 c 100.00 99.29 99.04 98.91 98.83 98.78 81 / 2.07
d 100.00 99.31 99.13 99.05 98.98 98.77 81 / 2.05
e 98.47 98.35 98.27 98.13 97.90 97.48 39 / 1.00
a 100.00 99.43 99.28 99.19 99.14 99.10 111 / 2.34
b 100.00 99.46 99.33 99.25 99.21 99.17 120 / 2.54

0.2 c 100.00 99.45 99.30 99.20 99.15 99.10 111 / 2.34
d 100.00 99.41 99.33 99.26 99.21 99.16 119 / 2.51
e 98.74 98.63 98.56 98.44 98.24 97.89 47 / 1.00
a 100.00 99.65 99.54 99.48 99.45 99.42 172 / 2.33
b 100.00 99.66 99.58 99.53 99.49 99.46 185 / 2.50

0.4 c 100.00 99.65 99.55 99.49 99.45 99.42 172 / 2.33
d 100.00 99.63 99.58 99.53 99.50 99.45 181 / 2.45
e 99.17 99.11 99.06 99.00 98.87 98.65 74 / 1.00

Figure 13. dbt3, only exclusive locks

scale 1 sites 2 sites 4 sites 8 sites 16 sites 32 sites speedup

a 100.00 95.00 92.71 91.69 91.23 91.04 11 / 2.18
b 100.00 94.95 92.65 91.62 91.16 90.96 11 / 2.16

0.025 c 100.00 94.50 91.99 90.87 90.36 90.14 10 / 1.98
d 100.00 87.44 84.40 89.76 89.96 89.78 9 / 1.91
e 97.95 86.16 82.80 81.34 80.75 80.49 5 / 1.00
a 100.00 95.81 94.19 93.33 92.98 92.83 13 / 2.43
b 100.00 95.71 94.07 93.20 92.85 92.69 13 / 2.38

0.05 c 100.00 95.23 93.42 92.43 92.05 91.88 12 / 2.14
d 100.00 88.48 86.17 91.55 91.47 91.34 11 / 2.01
e 98.17 87.38 84.58 83.29 82.83 82.60 5 / 1.00
a 100.00 95.79 94.10 93.39 93.06 92.91 14 / 2.13
b 100.00 95.67 93.95 93.23 92.90 92.76 13 / 2.09

0.1 c 100.00 95.16 93.31 92.54 92.17 92.01 12 / 1.89
d 100.00 90.35 87.78 91.29 91.42 91.33 11 / 1.74
e 98.47 89.42 86.58 85.56 85.08 84.88 6 / 1.00
a 100.00 97.55 96.56 96.12 95.92 95.83 23 / 2.89
b 100.00 97.48 96.48 96.03 95.83 95.74 23 / 2.83

0.2 c 100.00 97.05 95.95 95.45 95.23 95.13 20 / 2.47
d 100.00 91.92 90.18 94.37 94.72 94.69 18 / 2.27
e 98.74 91.13 89.17 88.42 88.11 87.95 8 / 1.00
a 100.00 98.16 97.49 97.03 96.87 96.77 30 / 2.72
b 100.00 98.11 97.44 96.97 96.81 96.71 30 / 2.67

0.4 c 100.00 97.83 97.07 96.56 96.38 96.27 26 / 2.36
d 100.00 94.37 93.06 95.89 95.98 95.93 24 / 2.16
e 99.18 93.82 92.38 91.69 91.38 91.21 11 / 1.00

