
The ATHOMUX Preprocessor User’s Guide

Thomas Schöbel-Theuer

Version 0.30, 5 Dec 2004

Contents

1 Purpose 2

2 Invocation 2
2.1 Options . 2

3 Structure of an ATHOMUX brick 2
3.1 Brick header . 3

3.1.1 Legal Issues . 3
3.1.2 Build versions . 3
3.1.3 buildrules . 4

3.2 brick statement . 4
3.2.1 Static header and implementation definitions 4
3.2.2 Instance variables / fields . 5

3.3 input andoutput statements . 5
3.3.1 Arrays of inputs / outputs . 5

3.4 use statements . 6
3.5 section statements . 6
3.6 operation statements . 6

4 Specifiers 7
4.1 Proposed New General Specifiers . 7

5 Call Syntax 9
5.1 Basic Syntax . 9
5.2 Extended Syntax . 9
5.3 Mandates . 10
5.4 Calls of Input Operations . 10

6 Nested Brick Instances 10
6.1 Wiring of Plain Sub-Instance Connectors 10
6.2 Wiring of Arrays of Connectors . 11

7 Macro processor 12
7.1 Local operations . 13
7.2 Generic macros . 13
7.3 Include Files / C preprocessor . 13
7.4 Stringification . 13
7.5 Expression Evaluation . 13
7.6 Conditional Expansion . 14
7.7 Lexical Scoping . 14
7.8 Expansion Order . 14

1

7.9 Parameter Expansion . 16
7.10 Computed Identifiers . 16
7.11 Misc Preprocessor Aids . 16

8 Additions 17
8.1 Avoiding code bloat . 17

9 Not yet implemented 17
9.1 Variants . 17
9.2 Provide / Require . 17
9.3 Generic Types . 17

10 Philosophy 18

A Appendix: Predefined Names 19

1 Purpose

The ATHOMUX preprocessor automates many programming tasks which would be very
tedious when done by hand. It generates C code from high-level brick specifications, inter-
mixed with ordinary C code.

To understand this document, you should have read some basic papers on the archi-
tecture of ATHOMUX, and you should be familiar with C programming. Currently the
description is very brief; you can help yourself by reading example code. A lot of stuff is
missing; this document may soon be outdated.

2 Invocation

pre.pl [options] filename.ath [filename2.c]
Generates filesfilename.h andfilename.c from filename.ath . For inspection and

debugging purposes, afilename.pre is also created, which contains the result of the macro
processor expansion phase. Whenfilename2.c is present, the.c , .h and.pre files will
be derived fromfilename2instead. Input and output files may reside in different directories
by specification of absolute or relative paths.

2.1 Options

-d generate debug code

-l generate#line directives

-i indent the trace produced by the C compiler flag-DTRACE

macroname=value define a parameterless macro on the command line

3 Structure of an ATHOMUX brick

The following description is no formal language description, but an informal intuitive de-
scription for hackers. At almost any places in the sourcecode, you can insert whitespace
and C comments (either//...\n or /* recursively nested comments allowed*/). The
recursive nesting of(...) [...] { ...} pairs is obeyed by the preprocessor; most syntax er-
rors will result from incorrect nesting! Currently the preprocessor will issue syntax errors

2

for all wrong syntaxat the preprocessor level, but the messages may not be very enlight-
ening. Whenever some C code appears in your Athomux sourcecode, it is passed to the C
compiler nearly unchecked; bad C syntax and semantics will be catched by the C compiler.

Badsemanticsat the preprocessor level is checked in many cases, but not always.
TODO: after the experimental stage is left and the language became stable, write a

more formal description.

3.1 Brick header

3.1.1 Legal Issues

Each*.ath file must directly1 start with a header, indicating the author, copyright and
license information for this file:
Author: name\n
Copyright: name\n
License: see files file1,file2\n

Notice that according to European law, the author(s)mustbe personallymentioned.
For multiple authors, please repeat theAuthor: line. Under European law, removal
/ replacement / transfer of author information is generally not permitted, not even with
consent of the author itself, and not even by contract. Notice that the GPL / LGPL is
necessarilybased on that European law whenever a European author starts to write a new
brick under (L)GPL.

In contrast to the author information, theCopyright: section can name an institution
such as the Athomux Society (which has yet to be founded), if the copyright has been
transferred accordingly. The transfer may even take place after publication of sourcecode.

After the License: see files , a list of file names residing in the root direc-
tory of the Athomux release should be specified. As an author of a new brick, you can
freely choose whatever license you like. However, it is strongly recommended to use both
the defaultSOFTWARE-LICENSE(which encompasses both the GPL and LGPL) and
PATENT-LICENSE (which permits free use of my patents provided that you put your
software under GPL or LGPL). Otherwise, you are not only at your own for obtaining the
necessary rights (e.g. in the field of software patents), but you also may complicate legal
issues a lot when a larger Athomux system is composed out of incompatible licenses.

3.1.2 Build versions

The following optional statement is ignored by the preprocessor, but used by themake
system to include or exclude the current brick source code from a particular build version:
context name: list... \n

Currently, a further keywordname and a colon must follow immediately af-
ter context : either pconf (denoting a preprocessor configuration specified by a
file pconf.*) , or cconf (denoting a C compiler configuration specified by a file
cconf.*) , or target (denoting amake target). After this second keyword and the
colon, a comma-separatedlist of names denotes the configurations where the current input
file is to be included. For example, the namedefault aftercontext cconf indicates
that the current brick should be included in the configurationcconf.default . By spec-
ifying an ! before a name, theexclusionfrom the specific configuration is specified. When
at least one! appears in the list, any configuration not mentioned in the list will bein-
cludedby default. Otherwise, any configuration not mentioned in the list will beexcluded.
As a consequence, it is recommended that you should uniformly specify either exeptions
for inclusion or exeptions for exclusion, but not mix them up.

A more detailed description can be found the documentation titeledThe Build System
of Athomux.

1This means, at this place no comments are allowed.

3

3.1.3 buildrules

After optionalcontext statements, any number ofbuildrules statements may follow:
buildrules kind: makefile-rules-text....\n endrules

A detailed description can be found the documentation titeledThe Build System of
Athomux.

3.2 brick statement

After the header information, abrick statement must follow:
brick # brick_name
purpose short-description\n
description long-description... enddescription
example ... endexample
attr name = value\n
...

The documentation part is indicated by keywordspurpose , description and
enddescription . Thepurpose is described by exactly one line; please keep it short.
Thedescription should tell the user anything necessary forusingthe brick (intended
environment etc.). Note that in this section the correct nesting of braces need not be ob-
served, since it is textual description, no sourcecode. Inside the description, the keyword
enddescription is forbidden, since it indicates the end.

All documentation phrases are optional (by omitting them completely), but are recom-
mended for any useful brick. Anexample for use cases of the brick may also be added.

Theattr list may be empty. It specifies static brick attributes (currently NYI). Each
line ist terminated by a linefeed.

The brick statement may be preceded by the keyword strategy . In this case
strat.h is automatically included and some further code is automatically generated.

TODO: write some tools for automatic extraction of docs from the sources (literate
programming).

3.2.1 Static header and implementation definitions

static_header { global_defs}
static_data { global_code}
static_init { global_init}
static_exit { global_exit}

Theglobal_defsis an optional part containing pure C code (with properly nested parens
and braces) which is copied to the start of the *.h output fileunmodified. Similarly, the
optional global_codeis copied unmodified to the start of the *.c output file. Normally
this should be usedonly for pseudo- or dummy-bricks running in the context of a foreign
operating system such as Linux. Don’t misuse for bad things! True ATHOMUX bricks
shouldnever#include foreign header files! If youreally need that part, you should only
place typedefs there or define some constants such as array dimensions, but no static or
external variables (if notabsolutelynecessary).

The optionalglobal_init andglobal_exitparts may be used for more sophisticated ini-
tialization and finalization upon loading / unloading of static module code. You cannot
access instance variable from that code, but only static variables (you arestronglyadvised
to avoid them at all! Whenever using static data, be sure thatlogical statelessness is never
violated!). You must not call any operations (including@.abort macros), since this code
will be executed at an early stage whereno inputs are connected!This is only foradvanced
usagesuch as creating self-describing meta information, self-contained strategy nests and
the like. Please use thestatic_* keywordsonly if you really know what you are doing!

4

3.2.2 Instance variables / fields

Instances of bricks may contain “local” variables which will exist during the lifetime of the
instance. They are declared
data { instance_var_declarations}
init { instance_var_initcode}
exit { instance_var_exitcode}

The instance_var_declarationsare C declarations, later copied to inside a Cstruct .
This means: nothing else than C field declarations are permitted.

The optionalinstance_var_initicodemay contain arbitrary C code which is executed
once at brick instantiation time (wheninit_ bricknameis called by the$instbrick
operation). The instance varsmustbe accessed by the special notation@#.variable_name,
since you will not have an ordinary C pointer for accessing the instance variables in conven-
tional sense. Please don’t circumvent the official syntax for accessing instance variables,
since the generated code may change in future releases.

NOTICE: the concepts of instance variables is in conflict with the concept of stateless-
ness! Try to avoid instance variables as much as possible! If you use them, always ensure
that any state is flushed to an input by the$init operation when thedestr parameter is
set (see programming guide)!

3.3 input and output statements

After thebrick statement, a sequence ofinput andoutput statements may follow:
input :< name(: max_sections:)
attrib name min_value max_value step_value\n
...
data { input_var_declarations}
init { input_var_initcode}
exit { input_var_exitcode}

Declares an input as part of the preceding brick specification.
The optionalinput_var_declarationsandinput_var_initcode/ input_var_exitcodeparts

are similar to brick instance variables, but accessed via@:<. var_name.
An input may consist of multiple nest instances called sections, which are always wired

in parallel; typical usage is for meta nests. The number of sections must be a constant
evaluable by the perl preprocessor (TODO: allow C-evaluable constant expressions). When
themax_sectionsnumber and the(::) are omitted, 1 is used as default (e.g. when a meta-
nest is not used); this saves some static space (not ateachinstance). Note that the input
variable instances arecommonfor all sections!
output :> name(: max_sections:)
attrib name min_value max_value step_value\n
...
data { output_var_declarations}
init { output_var_initcode}
exit { output_var_exitcode}

Declares an output. Themax_sectionsis optional as above. Output vars are acessed by
the special notation@:>. var_name.

3.3.1 Arrays of inputs / outputs

The output or input name may be followed by an optional[constant_expression] suffix,
declaring an array of outputs or inputs (examples seedir_simple.ath). Their local
vars are duplicated for each array member, so be careful with their space requirements.

You may access the fields of other array members via
the syntax @:>output_arrayname[index].fieldname or

5

@:<input_name[index].fieldname in the code of your operations.
When the output or input name is followed by empty brackets[] , a dynamicarray

of outputs or inputs is declared. The space for each array member will bedynamically
allocated bycontrol_* after $instbrick when$instconn is executed.

NOTICE: addressing of array members via the syntax
@:>arrayname[index].fieldname works only for fixed arrays! Also, notice
thatalias andwire statements (see section 6.2) will not work for dynamic arrays.

HINT: address calculation, total overhead and processor cache pollution (i.e. working
set behaviour) is better forfixed arrays in many cases. Whenever a fixed bound for the
number of array members is known, please prefer fixed arrays. Use dynamic arrays only if
you really know that an unlimited number may occur!

3.4 use statements

After an input statement, a list ofuse statements may follow. Their specific syntax and
purpose is described in the Programming Guide. Currently, some commodity library rou-
tines like transparent access to data blocks (Pointer Cache PC), cyclic doubly-linked ring
lists withO(1) element removal (LIST), and hashes (HASH) are planned/implemented. A
use statement is always terminated by a semicolon.

3.5 section statements

May be optionally used after output statements to switch to operations on the meta-nest, the
operation nest, or the operation-meta-nest of the currently active output. These nests are
distinguished by numbers. The interpretation of the numbers is currently not fully fixed,
but preliminary use it as follows: 0 (the default)is used for ordinary data nests, 1 for meta
nests in the filesystem.
section (: sec_nr:)

Switches both thedefaultsection number foroperation statements als well as the
default for@=call statements. The default is only used if you omit the section number in
a specifier. You may always override any default section number by explicitly specifying
it.

By specifying the reserved wordALL for sec_nr, the followingoperation declara-
tions will (by default) be automatically assigned to all sections, without producing code
bloat. Inside such a multi-section operation, you may access the actual section number via
@sect_code at runtime. When a section specifier for the target of a@=call statement
is ALL (either by default inheritance, or by explicitly specifyingALL), the@sect_code
from the caller is forwarded to the callee.

3.6 operation statements

Output statements may be followed by operation statements declaring elementary opera-
tions as described in the Programming Guide (and in some architecture papers).
operation $ op_name{ code}

op_namemust be one of the official names as described in the Programming Guide2.
In thecode, the arguments can be accessed via@arg_name, wherearg_namemust be men-
tioned in the operation description (see Programming Guide3).

2In case of doubt (inconsistent description etc), please consult the Perl hashtable%::op_args in pre.pl .
3In case of doubt, consult the comma-separated lists in%::op_args . The first list tells the input parameter

names of the operation, the second tells the output parameter names. When a third list is present, it tells the
arguments which may be clobbered by that operation. Any arguments not mentioned in this list must not be
clobbered (BUG: the current implementation violates this at some points! CHECK!). TODO: only permit output
or clobber arguments as C lvalues! Currently not yet checked!

6

Thecodemay also contain references to brick instance variables denoted@#.brick_var
and to output vars@:>. output_varof the currentoutput (if the operation belongs to an
output) or an input variable@:<. input_var(if your operation belongs to an input).

Calls to elementary operations of inputs or other outputs may also be performed, as
described in section 5.

When $op_nameis prefixed by a section specifier(: sect_nr:) , the operation will
belong to the specified section and not to the default section (e.g. as specified by a previous
section statement). It is recommended to use asection statement for a series of
operation statements instead of individually specifying the section of each one.

When$op_nameis prefixed by the section specifier(:ALL:) , that operation imple-
mentation will be assigned toall sections. However, in addition to specifyingoperation
$op_name(:ALL:) , you may override a single section with ad different implementation
like operation $ op_name(:0:) or similar.

4 Specifiers

Basic specifiers have been already used in the preceding description. Bricks are denoted
#brick_name, inputs:< input_name, outputs:> output_name, sections(: sect_nr:) , and
operations$op_name.

Full specifiers (in contrast to basic specifiers) may comprise multiple basic spec-
ifiers pasted together inascendingorder (starting from brick to specifier),without
any whitespacebetween them. A full operation specifier may e.g. be denoted
#brick_name:> output_name(: sec_nr:)$ op_name. Similarly, full section specifiers con-
tain a basic brick specifier, basic output and basic section specifier. Full input and output
specifiers are preceded by a basic brick specifier, and brick specifiers always stand for their
own.

If any prefix of a full specifier is missing, the current context is automatically
filled in. For example, if a specifier$get(:1:) is used in the context of operation
#test_brick:>out(:0:)$put , the brick and output part is automatically added to
yield the full specifier#test_brick:>out(:1:)$get .

4.1 Proposed New General Specifiers

The following general specifier syntax is not yet fully implemented. Dashed lines denote
currently non-implemented extensions. Dotted lines denoted a proposed new syntax which
is different from prior versions, but already parsed syntactically correct at least in some
cases:

7

The following special cases will be treated uniformly:

• An empty#brick part (denoted simply# without a brick name) means the current
brick name.

• An empty:<input part (denoted simply:<) means the current input name where
the specifier occurs (current scope)

• Dito for empty:>output .

In future, abbreviated specifiers not starting with# will be interpreted in the following
way: first, the specifier of the current context scope is prepended. If that does not yield a

8

valid specifier syntax, the last part of the current context specifier is stripped, and the test
is recursively tried again with a shorter scope specifier until either a possible completion
with a shorter scope specifier is found, or until no possible completion has been found at
all. This is similar in style to shadowing of identifiers in scoped programming languages:
always take the outmost possible definition of an identifier.

IMPORTANT: the new specifier syntax requires changes to the old@#brickvar ,
@<inputvar and @>outputvar syntax. It is now denoted@#.brickvar ,
@:<.inputvar and@:>.outputvar , respectively. Currently it works only for ab-
breviated brick, input and output parts, but full variable path specifiers (even for accessing
variables of nested brick instances) will be introduced soon (hopefully).

5 Call Syntax

5.1 Basic Syntax

Other output operations are called via the following basic syntax:
@=outputcall op_specifier(in_args) => (out_args)

wherein_argsis a comma-separated list of expressions which are assigned to the for-
mal input parameters of the operation in the same order as described in the Perl hashtable
%::op_args (seepre.pl), andout_argsis a comma-separated list of C lvalues which
receive the results.

The boolean output parameter@success exists at each operation. It denotes success
or failure of the called operation. Prior to actually calling, it is initialized tofalse . If the
callee does not explicity set it totrue , it will remain false . Thus failure of an operation
may be simply indicated by prematurely exiting it (e.g. via normal Creturn) before
@success has been set totrue .

Please insert a blank before the first argument parenthesis, because theop_specifiermay
also contain a paren at the section part. You should do that anyway to increase readability.

Theop_specifiermay contain a runtime-evaluatable expression at the section part. In
such a case, the target nest is computed at runtime. TODO: allow computable operation
names, probably even computable connector names.

There is another short form of the call syntax:
@=outputcall op_specifier args_pointer

where args_pointer must be an expression of typestruct args* (see file
common.h). There is one standard parameter of each operation named@args, which
is the default argument buffer for that operation. You may directly use@args in place of
args_pointer, leading to a shortcut argument passing. The advantage of this method is that
no new argument buffer needs to be constructed on the stack (and finally destructed) as is
necessary with the full calling syntax. The shortcut syntax is thus much more efficient. You
can access the default parameter@success equivalently via@args->success . When
declaring own argument buffers of typestruct args , you cannot use the@notation but
have to access to the fields as in conventional C.

When a section specifier for the target of a@=call statement isALL (either by de-
fault inheritance, or by explicitly specifyingALL), the @sect_code from the caller is
forwarded to the callee.

Instead of@=outputcall , the short form@=call may be used synonymously for
both call variants; most calls will be@=outputcalls in practice.

5.2 Extended Syntax

Both call syntaxes may be extended by an optional: argafter the parameter list (or after the
arg in short form syntax), which will be replaced for the default@paramstring argument
of the called operations. By default, the@paramof the caller is just passed through.

9

5.3 Mandates

As explained in the monography,mandatesare general-purpose descriptors denotingown-
ersof resources. Mandates may betransferredamong brick instances. Currently, mandates
are only used for locks (but this may soon change!).

After the op_specifierof the default call syntax, an optional bracket expression
[mandate] may be added. It tells the callee under which mandate the operation should
be executed. When omitted at the long call syntax, the default mandate@#._mand of
the caller instance is automatically used by default. However, when omitted at the short
call syntax, the@mandate parameter may be uninitialized when you forget to initialize it
explicitly. When you just forward@args, the old mandate value supplied by your caller
will be forwarded, which may be just your intended behaviour.

Be sure to check whether you want an operation to act under the mandate of your own
brick instance or under a foreign mandate.

DISCUSS: these special-case syntaxes are irregular and should be replaced by a more
systematic syntax!

5.4 Calls of Input Operations

Operations defined on inputs (such as$input_init or $retract) may be called by
denoting@=inputcall instead of@=outputcall . This results in forwarding of calls
against the ordinary direction of wires; when multiple inputs are connected to a single
output, the specified operation is called ateachof those inputs. For more details, see the
Programming Guide.

6 Nested Brick Instances

Locally nested brick instances can be inserted into the enclosing brick instance via the
following syntax (after the brick definition, but before defining inputs and outputs):
instance brick_typeas instance_name;

You may create multiple instances of the same type, but they must have distinct names.
The Inputs and Outputs of a nested instance can be accessed via the following extended

specifier syntax:#mybrick_name#instance_nameor ## instance_namefor short. You may
directly call an operation on an output or input of the nested instance just by using the ex-
tended specifier syntax. When calling an operation of the nested instance from code of the
outer level, a slightly more efficientdirect procedure call is produced by the preprocessor
instead of anindirect call. However, the converse ist currently not optimized, because we
don’t generate code for a new version of the inner instance where the indirect calls could
be replaced by direct ones. Doing that could easily lead tocode bloatand is expected to be
counter-productive inmost casesdue to processor cache pollution!

TODO / DISCUSS: by introduction of keywordsspecialized andmacro , some
(extremely tiny!) operations could be marked for inline expansion when they are used as
an inner instance.

6.1 Wiring of Plain Sub-Instance Connectors

This section treats only aliases and wires for non-array inputs/outputs.
Instead of explicitly calling the operations of a nested output, you can generate an

alias for a nested output such that itdirectly appears as an external output of the enclosing
instance:
alias # mybrick_name#instance_name:> sub_output as
#mybrick_name:> my_output;

or shortform

10

alias :> sub_outputas :> my_output;
In the shortform, missing parts of the first specifier are always automatically completed

with the nested sub-instance name, and the second specifier is completed with the enclosing
brick name. Please prefer to create an alias wire whenever possible, because it does not
consume any ressources, it just creates an alias-specifier which makes the inner output to
appear as an output of the enclosing instance.

Analogously, if you want a nested input to appear as an externally accessible input of
the enclosing instance, you can do that also:
alias # mybrick_name#instance_name:< sub_inputas # mybrick_name:< my_input;

or shortform
alias :< sub_inputas :< my_input;

In case of inputs, you cannot intercept any operation calls produced by the local in-
stance, because it is directly forwarded to the outside as if it had been called on an ordinary
input. If you want to intercept calls, you can do so by declaring a local output:
local output :> my_localname{} {}

This produces an output in the enclosing instance which is however not visible from the
outside, i.e. you cannot call$connect at it at the strategy level. Now you can implement
your operations on the local outputmy_nameand redirect the nested input to your local
output via the following statement:
wire :< sub_inputas :> my_localname;

The keywordwire indicates that one of the specifiers is an input while the other is
an output. The result is the same as if acontrol_* had performed a wiring operation;
however this is more efficient because the wire connection is createdlocally at instantiation
time of the enclosing instance.

Note that in this case, we currently re-use the indirect procedure calls of the nested
instance and just redirect them to the outer code.

Of course, the same kind of redirection will also works with non-local (visible) outputs
and with local outputs of (other) nested instances.

You can also create local inputs by prefixing the keywordinput with the keyword
local . However, the rules for connecting are slightly different: while a visible input
must not be forwarded to any other (local or nested) output (since a connection can only
be made bycontrol_*), a local inputmustalways be wired locally (since there is no
control_* which could create a connection). Currently, operation calls on local inputs
are always generated asindirectprocedure calls; when you want more efficient direct calls,
just directly call the wired output of the nested instance.

You can even directlywire an input of a sub-instance to an output of another sub-
instance.

TODO/DISCUSS: allow non-local outputs to be additionally wired internally such that
parallel wiring of both internal and external wires may occur.

WARNING: $init of nested instances isnotautomatically called at instantiation time.
You have to do that “by hand”. A good place is from some$init implementation at the
outer level.

WARNING: be sure that you connectall the inputs of the sub-instances (whether to a
local instance or to the outside). Otherwise they will never be wired. Calling an operation
on an unwired input will crash!

6.2 Wiring of Arrays of Connectors

When your sub-instance has fixed arrays of inputs or outputs, you should read the following
carefully. Dynamic arrays are generally not treatable byalias andwire .

Exporting arrays to the outside works only forarrays as a whole. You have to explicitly
denote this case by empty brackets as in the following examples:
alias : <sub_input_array[] as : <exported_array[] ;
alias : >sub_output_array[] as : >exported_array[] ;

11

Analogously, you can create internal bunches of wires to local arrays of connectors as
follows:
wire : <sub_input_array[] as : >local_array[] ;
wire : >sub_output_array[] as : <local_array[] ;

However ensure that your local array declaration has the same number of elements.
Otherwise you will get a crash at instantiation time. TODO: automatically check bounds
by the preprocessor or compiler, even in presence of arbitrary constant expressions for the
array sizes!

You can also create a wire for asinglearray member of the sub-instance to a non-array
local connector. This is denoted as follows:
wire : <sub_input_array[17] as : >local_output;
wire : >sub_output_array[const-expr] as : <local_input ;

Be sure to connect all array members of the sub-instance on which an operation could
(potentially) be called. Otherwise you will get a crash.

Wires to individual array memebers of local connectors are also possible. Be sure to
connect any of the array members somehow.

7 Macro processor

The ATHOMUX preprocessor comes with its own macro processor, independent from the
conventional C preprocessor. It should be both more comfortable and more capable.

New macros are defined via one of the following syntaxes:
@.define macro_name(formal_inparams) { code}
@.define macro_name(formal_inparams) => (formal_outparams) { code}

The formal parameters is either a comma-separated list of names, or a list of pairs
type_spec namewheretype_specis an ordinary C type-expression. When types are present,
the macro expansion will later behave differently: the actual argument is assigned to a
temporary variable of typetype_specand thus evaluated only once, regardless how often
it is used insidecode. This is much similar toinline functions in C and different from
the C preprocessor. Whentype_specs are omitted, the actual argument is evaluated at each
occurrence incode.

Instead of writing thecodein braces, you may write it in parens instead. In this case, the
whole macro should be a comma-expression, and should be called in place of an expression.
A third variant is({ code}) which acts also as an expression, but contains statements (see
docs for proprietary extensions of the GNU C compiler).

Attention: the expansion can be used only in place of statements or expressions inside
other code, because it opens a new lexical scope. When you want to write macros contain-
ing other preprocessor instructions such assection or wholeoperation s, you have to
use@.macro instead of@.define as explained later.

Macros are simply called viamacro_name(actual_inparams) or macro_name
(actual_inparams) => (actual_outparams) .

Note: themacro_namemay be a whitespace-separated list of multiple names, where
the first may start with the special characters@and@. as well as@=. This way, even the
@=call syntax can be emulated by the macro processor.
@.undef (macro_name)

This removes the definedmacro_name(if it was defined). Whenmacro_namewas not
actually defined, nothing happens.
@.isdef (macro_name)

Whenmacro_nameis currently defined, yield the text1 else0. Useful in combination
with @.compute and@.if .

12

7.1 Local operations

These are variants of the macro syntax, just by saying@.func instead of@.define .
Instead of expanding a macro at each call, a local function is generated with standard argu-
ments@args and additional arguments as specified by the formal parameters (where type
specifiers are mandatory for proper generation of function prototypes). At each call, the
@args of the caller is tranferred to the callee implicitly and automatically, to allow access
to @arg_namelike with ordinary macro expansion. In comparison to macros, code bloat is
avoided. However, there are subtle semantic differences: whenreturn is executed inside
a macro, thecallee is abandoned, because the code is inserted inline into the callee. In
contrast,return inside@.func only exits from that local function.

DISCUSS: should the samereturn behaviour be implemented with macros, to make
@.define a true drop-in replacement for@.func and vice versa? (the syntax is already
the same) Then existing code must be revised.

7.2 Generic macros

When you want to place other preprocessor constructs inside a macro, you have to use
@.macro in place of@.define . The disctinction is necessary, because expansion of a
@.define macro generates a new C scope in braces or parens with correct lexical nesting
of identifiers. The generic@.macro variant omits the braces and can thus be used in
places where preprocessor constructs such asinput , output , section , operation ,
attr and so on are to be generated by macros.

You should notuse type specifiers for parameters of generic@.macros, since there
may be no scope or the wrong scope where argument expression evaluation can be bound to.
When you do anyway, be sure that you know what you are doing, and check the generated
code.

7.3 Include Files / C preprocessor

You may include any other file via the following syntax:
@.include " filename"

The following directive will first feed thetext through the C preprocessor before ex-
panding it again in the Athomux preprocessor:
@.cpp { text}

Note that the result of the C preprocessor expansion is expanded once again by the
Athomux macro processor (usually without causing harm).

7.4 Stringification

You may convert any sequence of characters to a C string via the following directive:
@.string{ text}

The text will be first expanded for further macro occurrences. The result is then sur-
rounded by quotation marks. Internal quotation marks from thetext will be escaped by a
backslash. Percent signs will be doubled, and backslashes be escaped by another backslash.

7.5 Expression Evaluation

Computation of arbitray Perl expressions is supported by the following directive:
@.compute{ expr}

First, theexpr is expanded by the macro processor. The resulting text is then inter-
preted by Perleval() . The final result must be a Perl scalar, either a string or a number,
according to the Perl rules.
@.subst (regular_expression) { text}

13

Thetextwill be processed with theregular_expressionvia Perl’s=~ operator. Note that
regular_expressionis not expanded, but the substituted text will be further processed.

7.6 Conditional Expansion

@.if (expr1) { text1} @.elsif (expr2) { text2} @.else { text3}
First, expr1 is expanded in the current macro scope and then interpreted by Perl

eval() . When it results in a non-empty string or a non-null number (according to the Perl
rules), thetext1(without braces) will be the result of the expansion of the whole statement.
Otherwise, the optional@.elsif or @.else parts (if any) will be expanded according to
the usual rules of modern programming languages, as you will expect.

7.7 Lexical Scoping

@.scope { text}
This will treat thetext in a new sub-scope. Any definitions insidetextwill be lost after

closing the scope.
By default, any macro is also expanded in a new scope. When you define a (parameter-

ized) macro inside another macro, the definition will not be visible from the outside.
The default behaviour of@.define and@.macro may be changed by the following

extension:
@.define[option_list] (param_list) { body}

whereoption_listis a comma-separated list of one of the following option names:

flat When the macro is expanded later, the expansion will occur in the scope of the
caller. In particular, any sub-definitions from thebodywill remain valid.

preexpand Before defining the maco, the body is expanded in the current scope and ex-
pansion mode. At substitution time, it will be expanded once again by default.

prescope Do the preexpand in its own scope (i.e. discard any macro definitions
resulting from it).

postprotect When the maco is expanded later, the body will not be expanded. How-
ever, ordinary arguments will be substituted. This is often useful in combina-
tion with preexpand .

DISCUSS: anyone needing afull equivalent of\gdef from TEX?

7.8 Expansion Order

Although the ATHOMUX macro processor does not aim in sophistication, it can control
the expansion order to some degree.

Normally, the macro processor doesdeep expansionof macros in the following way:
Whenever a macro is found, its body will also be expanded. Endless recursion is avoided
by allowing any macro to occur in an expansion at mostonce; trying to expand an endless
recursion will simply not work.

If you want to expand somethingexactly once, you can do so by saying
@.step further_text
@.step { expanded_text} following_text

In the first form, thefurther_textwill be expanded exactly once and only at the begin-
ning, i.e. the next tokenmustbelong to a macro call; later macro invocations will not be
expanded. In the second form, the expansion may take place only atexpanded_text; the
following_textis treated the same way as if@.step was not present at all (depending on
the calling context).

14

@.expand further_text
@.expand { expanded_text} following_text

Any occurrences of any macro will be expanded anywhere infurther_textresp. ex-
panded_text,but each expansion will be exactly one level (not deep).

By placing further@.expand directives into theexpanded_text, you may expand more
times, but you will have to mark those places explicitly with@.expand each time.
@.deep further_text
@.deep { expanded_text} following_text

You may use this for switching back to deep expansion when you are in (possibly
repeated) single expansion mode.

To protect against expansion, you may use the following forms:
@.protect further_text
@.protect { protected_text} following_text

The further_textresp. protected_textwill not be expanded at all, i.e. copied verba-
tim. This will work even in case of deep expansion (which is the default). However no-
tice the difference betweendeep expansionand repeated expansion: when you nest two
@.expand{} around some text, the text will be expanded exactly twice; if there is some
@.protect in it, it will be removed the first time, and thus be expanded upon the second
repeatedevaluation.

Instead of nesting arbitrary numbers of@.expand or of another evaluation order di-
rective, you may use the following abbreviated syntax:
@.expand(count) further_text
@.expand(count) { expanded_text} following_text

The count must be a numeric constant, interpretable by Perl. It also works with
@.step , @.protect and@.deep.
@.copy(count) further_text
@.copy(count) { expanded_text} following_text

The further_textresp.expanded_textwill be expanded in the current expansion mode.
The result is then textually repeatedcounttimes. This is different from@.expand(count)
because theexpansion itselfis repeated exactly once, while theresult will be repeated
count-fold. Whencount == 0, the result of the expansion is discarded. This is useful
for catching the side effects of the expansion, e.g. further macro definitions insideex-
panded_text. Here is an example for transferring a C preprocessor definition into the Ath-
omux preprocessor:

@.copy(0){@.cpp{
#include <stdio.h>
@.define my_bufsiz (BUFSIZ)
}}

@.shuffle [number_list] { body0} { body1} ...
Use this to change the order among the bodies. First, all the bodies are expanded in their

original order, but not copied to the output. Thenumber_listmust be a Perl-interpretable
comma-separated list of numbers. Each numbern in the list indexes the expandedbodyn;
the result will be the expandedbodyn in the given order. When the same number appears
multiple times innumber_list, the corresponding body will appear each time. When a body
number does not appear at all, the body will not show up in the result.
@.expshuffle [number_list] { body0} { body1} ...

This does not change the order of the bodies, but determines the order in which each
body will be expanded, similar to TEX’s \expandafter (but for arbitrary number of
bodies and expansion permutations). After individual expansion of each body in the given
order (possibly even multiple times), all bodies (whether previously expanded or not) will
appear in the original order. Usage is only recommended for TEX gurus who know what
they do.

15

7.9 Parameter Expansion

At a macro definition, each parameter may be individually prefixed by an indicator of the
parameter expansion mode:
@: Substitute the actual parameterunmodfied, i.e. don’t expand the actual parameter before
it is substituted. This is the default!
@!: First expand the actual parameter before it is substituted; the expansion is done in the
old scope of thecaller.

Thepoint in timewhere a parameter is substituted can be controlledindependentlyfrom
the above:
@<-: First substitute the actual parameters into the macro bodybeforeexpanding the body.
As a consequence, the parameter willonly be expanded in the scope of the callee, but not
in (recursively) nested scopes (if you don’texplicitly pass it on as a parameter, which is of
course possible). This expansion rule is much like thedynamicscope rules of C, not of a
classical macro processor. This is the default!

You may combine@<-: with @!: via the compound syntax@!<-: in order to eval-
uate the actual argument twice, once in the scope of the caller and once again in the scope
of the callee (together with other macros).
@->: First expand the body of the macro, and onlyafter that substitute the actual param-
eter. If you don’t use the combination@!->: , the actual parameter will not be expanded
at all before substitution (however you may force a re-expansion of the already substituted
parameter by an external@.deep(2) around the whole macro call).
@def: define a parameterless macro at the scope of the callee (which will later substitute
the formal parameter name with the actual parameter argument), then expand the macro
body. This will not only result inlazyexpansion, but it can also result in strange side ef-
fects: normally, expansion will carry over to nested macro calls (which is often the desired
effect of “pumping in” parameters), but if anyone re-defines the same macro name inside
nested macros (e.g. with another@def: on the same name), the old definition will be
shadowed(i.e. obey the scope nesting, but get a totally different meaning), which might
not be expected or could look strange (if you don’t know what you are actually doing). To
avoid some strange effects resulting therefrom, you should use the combination@!def:
which will first expand the actual parameter at theold scope before potentially overwriting
an old macro definition at the new scope (however notice that this results in eager evalua-
tion).

WARNING: when using@def: in a flat macro expansion, the symbol will remain
defined evenafter the flat expansion!

7.10 Computed Identifiers

You may createcomputed identifiersvia the special syntax@@:
name1@@name2

wherename2is an argument of your macro. Assume thatreplace2 is the actual
argument forname2, then you will get a compound identifiername1replace2 where
the@@is removed.

When the name created this way is itself appearing in another @@ context, the first
@@ is expanded first. For example,name1@@name2@@name3will first concatenate the
expansions ofname1andname2, yielding a new identifier (which may itself expand to
yet another identifier) before appending the expansion ofname3. If you need a different
expansion order, use@.expand (see previous subsection).

7.11 Misc Preprocessor Aids

The generic type system (see Programming Guide) often leads to tedious repetitions of
@* typename-> operators where always the sametypenamemust be denoted. For better

16

convenience and better readable code, you may use the following shortcut writing:
@.deftype typename{ body including@*-> operators ...}

After expanding thebody in the current expansion mode, all occurrences of@*-> in
the expandedbodywill be replaced with@* typename-> .

8 Additions

8.1 Avoiding code bloat

Multiple operations sharing the samecodemay be declared by
operation $ op1,$ op2,$ op3

This avoids code duplication in the*.ath sourcecode. The following predefined
placeholders may be used inside such common code:
BRICK_NAMEis substituted with the current brick name
CONN_NAMEis substituted with the current input or output connector name
SECT_NAMEis substituted with the current section number
OP_NAMEis substitued with the current operation name

WhenOP_NAMEis not used inside the body, only one single C function is generated
which is shared by all operations from the operation specifier list. WhenOP_NAMEis
present, a separate version with different subsitute values for eachop1, op2 and so on is
generated.

Advice: try to avoid these predefined low-level substitutions by using$op instead
(which avoids code bloat).

9 Not yet implemented

A lot of stuff....

9.1 Variants

Proposed syntax:
variant attrib_name value1, value2, value3, ...

By invoking pre.pl with a parameterattrib_name=value, specialized code is gener-
ated as if the attributeattrib_namehad only that one value. The first value is treated as
default value when the invocation parameter is omitted.

Conditional code generation should also be permitted. Proposed syntax:
??attrib_name== value{ code}

Probably further variants like != or set inclusion relations could be added later. Us-
age of the attribute value in ordinary C code must also be possible, e.g. by the syntax
@?attrib_name.

9.2 Provide / Require

In addition to static and dynamic brick/input/output attributes, functional and non-
functional requirements and provisions should be easily denotable and automatically
checkable bycontrol . Details have to be worked out.

9.3 Generic Types

The current generic type system should be revised and improved.

17

10 Philosophy

The architectural philosophy of ATHOMUX is explained in more depth in the German
monography, in some English papers, and in diverse presentations. These are for an aca-
demic audience. Here is a quick abstract with emphasis on hacker’s interests:

Please forget anything you know on object oriented design, and forget many things (but
not all!) you know on operating system architecture, in particular on how to build higher-
level abstractions. ATHOMUX is almost the converse of OO, and very different from
classical OS kernel architectures. It does not fit in such categories like “microkernel” or
“exokernel” or “monolithical kernel”, because it can beconfiguredto simulate any of those
models. If you need a headline, call it aninstance-orientedoperating system architecture.

ATHOMUX does anything with two basic abstractions: nests and bricks. The nest is a
universally generic address space abstraction. Ifnecessary, higher-level abstractionsmay
be builton top ofnests, but if possible try to avoid this and remain at the universally generic
level as long as possible! When you have to raise to a higher level of abstraction, do thisas
late as possible, and remain universally genericas long as possible.

Instead of creating new abstractions, createnew functionality!
Create new functionalityeither inside brick implementations (i.e. use bricks as black-

box wrappers andreusethe universally generic nest interface),or (even better) create it by
composingbrick instances to new brick network configurations (aka compositorical gener-
icity, i.e. reuseexisting components). This is similar to using the Unix shell for creating
pipelines of filter instances, such asgrep , awk, cut , Perl etc. Unix pipes are univer-
sally generic, by allowingany stream of bytes flowing through them, and by providing a
uniform interfacefor all filters (aka “pipe and filters style” in software architecture). Good
filters are universally generic, by processing a large class of possible data formats. The
shell creates compositorical genericity by allowing nearly arbitrary combinations of filter
instances. However, note that nests are slightly higher-level than Unix pipes and even more
generic for a much larger class of applications (the pipes are mentioned only as examples
of asimilar architectural style, not to explain nests!).

When you need a metaphor from real life, call ATHOMUX a LEGO-like brick sys-
tem. Current mainstream OS technology is at a stage where each part is manufactored
individually, with indidual interfaces, leading to high development costs and an inflexible
design. The next step after that is usingcomponents: According to Szyperski, a component
is characterized by explicitly interfacing betweenanoymoussoftware components which
sometimes even don’t know with which partner (from which manufacturer) they are in-
teracting. However, components are often built according to the metaphor of apuzzle: a
single piece may be replaced by another one having the same shape, but there exist a lot of
different interface shapes.

ATHOMUX is already the next generationafter component software: by using auni-
form interface type(similar to the LEGO principle of using always the same interface tenon
even for very different brick types), there are far more compositions than with current com-
ponent software. While component software (e.g. plugin architectures) deals with com-
position ofprogram code, ATHOMUX deals with composition of (a potentially unlimited
number of)runtime instances.

Another fundamental difference of the ATHOMUX architecture to other architectures
(in particular OO) isstatelessnessor pseudo-statelessnessof brick instances. Of course, it
is possible to implement bricks as stateful ones. However, statelessness will ease reconfig-
uration, fault tolerance, migration, network transparency, and much more by treating state
explicitly. Statelessness means simply that state is kept in the inputs of a brick instance,
not in the instance itself. State keeping isdelegatedto other instances, until finally to the
hardware. Explicit state has the advantage that you can copy and migrate it!

ATHOMUX may be labelled an “instance oriented operating system”. What is instance
orientation?

Compositionof brick instances to networks is regarded as a basic building principle,

18

similar to LEGO brick systems in the area of toys or other LEGO-like mechanical systems
(e.g. look at the mechanical / pneumatical components of the German engineering company
Festo, and others like Bosch-Rexroth motion kits). We deal with composition networks
explicitly. Wired networks of bricks are described by nest instances, recursively. This is
done at a separate level calledstrategy level. There you can dotransformationson brick
networks, e.g. create newviewson brick networks or evenvirtual brick networks. That’s
the basic idea of instance orientation.

Some examples for such transformations may be found in the paper on merging op-
erating systems and databases. A simple example is creation oflocation transparencyin
a network of computers: a transformation on the strategy level may automatically insert
remote andmirror bricks wherever necessary, and provide a view where the concrete
location of brick instances is hidden. You can get a truedistributed operating system(in
contrast to a network OS) with that, but when orthogonally combined with database func-
tionality, you get something no word has been coined for yet.

The far-distantgoal is thus:beyondUnix and current mainstream OSes,far beyond!
The architecture of ATHOMUX aims to provide the construction principles for the next 30
years, as a successor of the currently established OS building principles which have been
successfully used for more than 30 years now, and have been extended and balconized
many time (but showing up their limits more and more often). ATHOMUX is thus starting
from scratch. Its native interface to applications could and should be different from other
OS interfaces. Only for the sake of compatibility, in particular with Unix / Linux (but not
limited to that),personalitiesshall be added, based onadaptors.Such adaptors should be
principallyoptional configurations, interoperable with each other.

At current stage, ATHOMUX is at its very infancy. Like any OS, it will require many
years and much effort until it becomes mature enough to compete with current mainstream
technology. It will become valuable if people become interested and intrigued by itspoten-
tial.

If you can see the potential very farbeyondcurrent OS architectures, please come and
join its delevopment!

A Appendix: Predefined Names

@args The default arguments of an operation, of typestruct args . The members
may be accessed via the syntax@member.

@param The default parameter string

@#._mand The default mandate number of the current brick instance. Default numbers
are automatically generated at brick instantiation time.

19

